
For Use with Simulink®

Getting Started
Version 6

 Stateflow®

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Getting Started with Stateflow
© COPYRIGHT 2004-2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: June 2004 First printing New for Version 6.0 (Release 14)
October 2004 Online only Revised for Version 6.1 (Release 14SP1)
March 2005 Online only Revised for Version 6.2 (Release 14SP2)

i

Contents

1
Introduction to Stateflow

What Is Stateflow? . 1-2

How Stateflow Works . 1-3
Stateflow Works with Simulink . 1-3
Stateflow Represents Control Modes with States 1-6
Stateflow Changes Active States with Transitions 1-7
Stateflow Reacts to Events . 1-8
Stateflow Chooses Destinations with Junctions 1-9
Stateflow Uses Data Variables . 1-10

Watching Stateflow Execute During Simulation 1-12

Generating C Code for Targets . 1-14
Simulation Targets . 1-14
Real-Time Workshop Targets . 1-14
Custom Targets . 1-15

Ways That You Can Use Stateflow . 1-17

Before You Get Started . 1-19
Required User Knowledge Level . 1-19
Required and Optional Software . 1-19
Stateflow Installation . 1-20
Setting Up Your Own Target Compiler 1-21
Using Stateflow on a Laptop Computer 1-22

2
Controlling with States and Transitions

Building an On-Off Control Model . 2-2
Creating a Simulink Model with a Stateflow Block 2-3

ii Contents

Saving a Simulink Model . 2-5
Opening the Diagram for a Stateflow Block 2-6
Drawing States in Stateflow Diagrams 2-7
Drawing Transitions in a Stateflow Diagram 2-10
Adding a Trigger Event to the Stateflow Diagram 2-14
Sending a Trigger Event to the Stateflow Chart 2-16

Simulating a Stateflow Diagram . 2-22
Setting Up Diagram Simulation . 2-22
Simulating a Stateflow Diagram . 2-25
Using the Debug Tool During Simulation 2-31

Guarding Transitions with Event Triggers 2-36
Adding Event Triggers to Transitions 2-36
Adding Multiple Trigger Events to a Stateflow Chart 2-42
Sending Multiple Trigger Events to a Stateflow Chart 2-46

Modifying Output Data with Actions 2-50
Adding State Entry Actions . 2-50
Adding Output Data to the Stateflow Chart 2-52
Sending Stateflow Output Data to Simulink 2-54

Simulating Event Triggers and Modified Output Data . . . 2-55

3
Controlling with Junctions

Adding a Sensor to the Model . 3-2
Adding a Sensor Event . 3-2
Adding Sensor Data . 3-6

Adding a Junction for Flow Control . 3-8
Deleting, Copying, and Renaming Stateflow Objects 3-8
Adding and Connecting Junctions . 3-13
Entering Transition Conditions . 3-16

iii

Adding a Graphical Function for Convenience 3-19
Adding a Graphical Function . 3-19
Calling a Graphical Function . 3-24

Simulating with a Sensor Event, Junction, and Function 3-25

Simulating Junction Behavior . 3-31

Introducing Stateflow Semantics . 3-36

Using Junctions in Flow Diagrams . 3-37

4
Controlling with Superstates

Adding Superstates to Simplify Control 4-2
Adding a Superstate . 4-3
Simulating the Superstate . 4-9

Adding a History Junction to Save State 4-14
Adding a History Junction to a Superstate 4-14
Simulating with a History Junction . 4-17

Creating Subcharts to Add More Substates 4-20
Converting a State to a Subchart . 4-20
Simulating a Subchart . 4-28

Controlling Objects with Parallel Superstates 4-31
Creating Exclusive States . 4-31
Creating Parallel States . 4-32
Simulating Parallel States . 4-37

iv Contents

5
Stateflow in Simulink

Controlling a Physical Plant . 5-2

The Bang-Bang Boiler Demo . 5-8

Where to Go from Here . 5-13

Index

1

Introduction to Stateflow

This chapter introduces you to Stateflow® with preliminary information that you need before you
start using Stateflow.

What Is Stateflow? (p. 1-2) Get an overview of Stateflow features.

How Stateflow Works (p. 1-3) Get an overview of how Stateflow operates in Simulink®
models.

Watching Stateflow Execute During
Simulation (p. 1-12)

See how you can easily modify your design, evaluate the
results, and verify the system's behavior at any stage of
your design.

Generating C Code for Targets (p. 1-14) Learn how Stateflow automatically generates integer,
floating-point, or fixed-point code directly from your
design (requires Stateflow Coder).

Ways That You Can Use Stateflow
(p. 1-17)

Shows you a variety of simulation types for which
Stateflow is a preferred modeling tool.

Before You Get Started (p. 1-19) Make sure that Stateflow is installed properly on your
system.

1 Introduction to Stateflow

1-2

What Is Stateflow?
Stateflow is a graphical design and development tool that works with
Simulink. Stateflow is a suitable environment for modeling logic used to
control and supervise a physical plant modeled in Simulink.

Stateflow integrates with its Simulink environment to model, simulate, and
analyze your system. Stateflow lets you design and develop deterministic,
supervisory control systems in a graphical environment. It visually models and
simulates complex reactive control to provide clear, concise descriptions of
complex system behavior using finite state machine theory, flow diagram
notations, and state-transition diagrams all in the same diagram. Stateflow
brings system specification and design closer together. It is easy to create
designs, consider various scenarios, and iterate until the Stateflow diagram
models the desired behavior.

How Stateflow Works

1-3

How Stateflow Works
In Simulink, a Stateflow block uses a Stateflow diagram to represent an object
with a discrete set of modes. These modes are known as states. The Stateflow
finite state machine reacts to events by changing states for the controlled
object. The behavior of the object depends on what state the object is in and how
the object changes from one state to another.

Use the following topics to get an introductory understanding of how Stateflow
works in a Simulink model:

• “Stateflow Works with Simulink” on page 1-3

• “Stateflow Represents Control Modes with States” on page 1-6

• “Stateflow Changes Active States with Transitions” on page 1-7

• “Stateflow Reacts to Events” on page 1-8

• “Stateflow Chooses Destinations with Junctions” on page 1-9

• “Stateflow Uses Data Variables” on page 1-10

Stateflow Works with Simulink
Stateflow is a tool in Simulink that can be used to represent dynamic control of
a control object in a physical plant that you model in Simulink. A control object
can be a motor, a pump, or any device that changes the behavior of the model
to control its operation. In Stateflow diagrams, you visually model reactions of
the control object to physical events from sensors and switches. These reactions
make decisions that change the behavior of the Simulink model.

1 Introduction to Stateflow

1-4

The following diagram depicts a Stateflow block in the Stateflow demo model
sf_boiler (type sf_boiler at the MATLAB® prompt):

Stateflow block
in a Simulink model

How Stateflow Works

1-5

In the sf_boiler model, the Stateflow block controls a boiler simulated by the
Simulink subsystem Boiler Plant Model. If you double-click the Stateflow block
in this model, the Stateflow diagram that programs this Stateflow block
appears in the Stateflow diagram editor window, as shown.

You can design a model starting with a Stateflow (control) perspective and then
later build the Simulink model. You can also design a model starting from a
Simulink perspective and then later add Stateflow diagrams. You might have
an existing Simulink model that would benefit if you replace Simulink logic
blocks with Stateflow diagrams. The approach you use determines how, and in
what sequence, you develop various parts of the model.

1 Introduction to Stateflow

1-6

Stateflow Represents Control Modes with States
The following example Stateflow diagram has two states, On and Off:

Finite states model objects that have a limited number of states. For example,
a house fan or a blender can have states such as High, Medium, Low, and Off.
Automatic transmissions in automobiles can have states such as Park,
Reverse, Drive, and Low. The preceding example has just two states: On and
Off. These states could model a light switch or a single-speed motor.

A state can be active or inactive. If a state is active in Stateflow, you can
program activity to take place when it becomes active. For example, if the On
state for a fan is made active, this can represent the fact that the fan is now on.
If the Drive state for an automatic transmission is active, this can represent
the fact that the vehicle using this transmission is moving in the forward
direction in highest gear.

How Stateflow Works

1-7

Stateflow Changes Active States with Transitions
States alone are not sufficient to model the behavior of an object that changes
active states. Also needed are paths for changing active states. This service is
provided by transitions. The following example adds three transitions to the
example in “Stateflow Represents Control Modes with States” on page 1-6:

Notice that transitions are directional. They originate with a source state and
terminate with a destination state. If the source state is active and the
transition is taken, the source state becomes inactive and the destination state
becomes active.

For example, if the Off state is active, the On state can become active through
the Off to On transition. However, the model cannot use the same transition to
activate the Off state if the On state is active. To make this change, an On to
Off transition is required.

Also present is another type of transition, a default transition. This transition
points to the state Off but has no apparent source state. The default transition
is used to indicate which of the two states, On and Off, becomes active when
the Stateflow diagram becomes active. In this case, the Off state becomes active
when the diagram becomes active.

Off to On transition

On to Off transition

Default transition

1 Introduction to Stateflow

1-8

Stateflow Reacts to Events
Events provide the motivation that a model needs for taking a transition
between states. An event can represent the point at which the temperature in
a room exceeds a given temperature. An event can represent the point that
water in a container reaches its top level requiring that the flow of water to it
be shut off. Normally, the physical plant modeled in Simulink originates these
events, which trigger a Stateflow block that responds to them.

An important thing to remember is that Stateflow diagrams become active only
if an event occurs. Also, no transition from the active state to another state
takes place without an event. In the preceding example, if the Off state is active
and no later event is received, the Off state stays active.

Events can be specific in Stateflow, and the diagram can watch for specific
events with the event triggers, as shown in the following example:

In this example, the transition from the Off state to the On state takes place
only if the Off state is active and the event on_switch is received. Also, the
transition from the On state to the Off state takes place only if the On state is
active and the event off_switch is received.

Event triggers for taking transitions

How Stateflow Works

1-9

Stateflow Chooses Destinations with Junctions
While states, transitions, and events are the basic building blocks of a state
machine, Stateflow also provides decision points in transitions with junctions.
Junctions provide an alternative path for transitions.

In the following example, a junction has been added to the preceding diagram.

If the transition from Off to the junction is taken, one of the transitions out of
the junction is taken thereafter. In this case, if the temperature is greater than
or equal to 30 degrees, the Off state is reentered and the Off state stays active.
If not, the transition to the On state is taken and the Off state is exited and the
On state becomes active.

You can use flow diagram notation to create decision-making logic such as for
loops and if-then-else constructs without the use of states. In some cases,
using flow diagram notation provides a closer representation of the required
system logic that avoids the use of unnecessary states.

1 Introduction to Stateflow

1-10

Stateflow Uses Data Variables
In the following example, discussed in “Stateflow Chooses Destinations with
Junctions” on page 1-9, outside temperature is represented by the variable
temp.

temp is an example of Stateflow data. Stateflow data are variables or constants
that you define for Stateflow diagrams.

How Stateflow Works

1-11

You can define local data used only within the Stateflow diagram or you can
define input or output data that you receive from or send to the Simulink
model, respectively.

The following diagram shows two data inputs from Simulink.

In this example, the data temp_init receives its value from a Constant block
in Simulink as the minimum setpoint temperature for the physical plant. temp,
the temperature of the physical plant, is updated as input data from the
physical plant in Simulink during simulation.

1 Introduction to Stateflow

1-12

Watching Stateflow Execute During Simulation
Once you finish a Simulink model with a Stateflow block, you can simulate it.
During simulation, Stateflow animates its Stateflow diagrams to show you how
it responds to events, takes transitions, and changes states. In the animated
diagram, active states are highlighted, as shown in the following example:

When events occur and transitions are taken, they too are highlighted.
Continuing with the previous example, the following figures show what
happens when an on_switch event occurs and the value of temp is less than 30:

1 The transition to the junction is taken.

Watching Stateflow Execute During Simulation

1-13

2 Because temp is less than 30, the transition to the On state is taken.

3 The Off state is exited; the On state is entered, becomes active, and stays
active.

1 Introduction to Stateflow

1-14

Generating C Code for Targets
When you are finished with your model, you might want to use the control part
of your model as a source for code that you use in the actual controller for an
actual physical plant. In this case, you may want to take advantage of
Stateflow code generation.

Stateflow generates code for targets. A target is an object that belongs to a
Stateflow machine. A machine is a container for all the Stateflow blocks in a
Simulink model. A target object functions as a container for the generated code
from the Stateflow blocks in a Stateflow machine.

There are three types of targets for a Stateflow machine, which are described
in the following topics:

• “Simulation Targets” on page 1-14

• “Real-Time Workshop Targets” on page 1-14

• “Custom Targets” on page 1-15

Simulation Targets
When you use Stateflow for simulation, Stateflow generates an S-function
(MEX-file) for each Stateflow machine to support model simulation of
Stateflow diagrams. The name for a simulation target in Stateflow is sfun.

Stateflow simulates its diagrams with generated code. Stateflow generates its
own C-code to simulate Stateflow diagrams during simulation. When you
generate code for simulation, this is referred to as generating a simulation
target whose name is sfun.

Real-Time Workshop Targets
Real-Time Workshop® coordinates code generation from Simulink with
Stateflow code generation to build an embeddable target, which is depicted in
the following diagram.

Generating C Code for Targets

1-15

Stateflow Coder generates integer or floating-point code based on the Stateflow
machine. Real-Time Workshop generates code from the Simulink portion of the
model and provides a framework for running generated Stateflow code in real
time. The code generated by Stateflow Coder is seamlessly incorporated into
code generated by Real-Time Workshop. You might want to design a solution
that targets code generated from both products for a specific platform. If you
have the Real-Time Workshop tool, you can take code from Simulink and
Stateflow and run it as an application in another environment to control a
process. For more information, see the Real-Time Workshop documentation.

Custom Targets
If you have Stateflow Coder, you can generate code for target applications that
you build in other environments, such as an embedded environment. Use
custom targets with Stateflow Coder to generate code exclusively for the
Stateflow machine portion of the Simulink model. Custom targets are uniquely
named as something other than sfun or rtw in Stateflow. For more

MATLAB

Simulink

Stateflow

Stateflow
Coder

Real-Time
Workshop

1 Introduction to Stateflow

1-16

information, see “Configuring a Custom Target in Stateflow” in your Stateflow
documentation.

Ways That You Can Use Stateflow

1-17

Ways That You Can Use Stateflow
Here are a few of the ways that you can use Stateflow diagrams in your
Simulink models.

• Simulate plant control. — The primary use of Stateflow is to simulate the
control of control objects in a physical plant. For example, an automobile
engine needs a fan to blow air through a radiator to cool water for cooling an
engine. You model the engine with Simulink. You add a Stateflow block to
monitor engine temperature and activate the fan and water pump for the
engine.

• Choose state equations for simulation. — In models that simulate complex
behavior based on complex physical relationships, you might need to change
the equations that you use in response to plant circumstances. For example,
if you are using Simulink to model materials during a collision, you might
want to add a Stateflow block to change the equations of state depending on
current values for stress, strain, and deformation.

• Program complex logic visually. — You can use Stateflow as a visual
programming environment with flow diagrams that use only junctions and
transitions. For example, the following Stateflow diagram performs the
equivalent of a set of cascading if-then statements:

1 Introduction to Stateflow

1-18

During simulation of your model, you can animate your visual programs and
watch them execute. You can slow down execution or place breakpoints at
different points in the program to examine outcomes, such as the value of
data variables.

Here are some types of applications that benefit directly from the use of
Stateflow:

• Embedded systems

- Avionics (planes)

- Automotive (cars)

- Telecommunications (for example, routing algorithms)

- Commercial (computer peripherals, appliances, and so on)

- Programmable logic controllers (PLCs) (process control)

- Industrial (machinery)

• Man-machine interface (MMI)

- Graphical user interface (GUI)

• Hybrid systems

- Air traffic control systems (digital signal processing [DSP] + control +
MMI)

Demonstration examples have already been created for several of these
application types. Once you learn Stateflow, be sure to examine the Stateflow
demo models. See “Where to Go from Here” on page 5-13 for instructions on
accessing the Stateflow demo models.

Before You Get Started

1-19

Before You Get Started
Before you start learning how to use Stateflow, check the following
requirements:

• “Required User Knowledge Level” on page 1-19

• “Required and Optional Software” on page 1-19

• “Stateflow Installation” on page 1-20

• “Setting Up Your Own Target Compiler” on page 1-21

• “Using Stateflow on a Laptop Computer” on page 1-22

Required User Knowledge Level
Users of this Getting Started guide are presumed to have no knowledge of
Stateflow. However, a minimum level of Simulink knowledge is required to
draw the Simulink diagrams in the examples included in this guide.

Required and Optional Software
Stateflow is a multiplatform product that runs on Microsoft Windows and
UNIX systems. Stateflow 6 requires the installation of the following software:

Required Product Description

MATLAB The Language of Technical Computing

Simulink Design and simulate continuous- and
discrete-time systems

C or C++ compiler Used to compile Stateflow generated code
for simulation. See “Setting Up Your Own
Target Compiler” on page 1-21 for more
information.

1 Introduction to Stateflow

1-20

You can enhance the operation of Stateflow with the installation of the
following optional software:

For more information about any of these products, see one of the following:

• The online documentation for that product if it is installed

• The MathWorks Web site at www.mathworks.com; see the “products” section

• The Stateflow Web site at www.mathworks.com/products/stateflow

Stateflow Installation
Your platform-specific MATLAB installation documentation provides
essentially all the information you need to install Stateflow.

Prior to installing Stateflow, you must obtain a License File or Personal
License Password from The MathWorks. The License File or Personal License
Password identifies the products you are permitted to install and use.

Stateflow and Stateflow Coder have certain product prerequisites that must be
met for proper installation and execution.

Optional Product Description

Simulink Report Generator Automatically generate documentation for
Simulink and Stateflow models

Stateflow Coder Generate C code from Stateflow diagrams

Real-Time Workshop Integrate generated code from Stateflow
diagrams with generated code for the
Simulink elements of the model to create an
embeddable application

Licensed
Product

Prerequisite
Product

Additional Information

Simulink 6.2 MATLAB 7.0.4
(Release 14SP2)

Allows installation of Simulink and
Stateflow in Demo mode.

Before You Get Started

1-21

If you experience installation difficulties and have Web access, look for license
manager and installation information on the MathWorks support page at
www.mathworks.com/support.

Setting Up Your Own Target Compiler
Building Simulink targets for Stateflow generated code requires a C compiler
that MATLAB supports. The Microsoft Windows version of Stateflow comes
with a C compiler (lcc.exe) and a make utility (lccmake). Both tools are
installed in the directory matlabroot\sys\lcc. If you do not configure
MATLAB to use any other compiler, Stateflow uses lcc to build targets.

For other compilers and for all non-Windows platforms, do the following:

1 Install the C compiler you want Stateflow to use to build targets on your
system.

You can use any compiler supported by MATLAB for building MATLAB
extension (MEX) files. See “Building MEX-Files” in the MATLAB External
Interfaces documentation for information on C compilers supported by
MATLAB.

Note Stateflow supports building targets with Microsoft Visual C/C++ 5.0
only if you have installed the Service Pack 3 updates for that product.

Stateflow 6.2 Simulink 6.2 N/A

Stateflow
Coder 6.2

Stateflow 6.2 N/A

Licensed
Product

Prerequisite
Product

Additional Information

1 Introduction to Stateflow

1-22

2 At the MATLAB prompt, type

mex -setup

to initiate prompts for entering the appropriate information about your
compiler.

Stateflow uses the compiler that you specify to build MEX-files for building
a Stateflow simulation target.

Using Stateflow on a Laptop Computer
If you plan to run the Microsoft Windows version of Stateflow on a laptop
computer, you should configure the Windows color palette to use more than 256
colors. Otherwise, you can experience unacceptably slow performance.

To set the Windows graphics palette:

1 Click the right mouse button on the Windows desktop to display the desktop
menu.

2 Select Properties from the desktop menu to display the Windows Display
Properties dialog.

3 Select the Settings panel on the Display Properties dialog.

4 Choose a setting that is more than 256 colors from the Color Palette colors
list.

5 Click OK to apply the new setting and dismiss the Display Properties
dialog.

2
Controlling with States
and Transitions

This chapter teaches you about Stateflow by guiding you through the creation and execution of a
simple control model. This model consists of a single Stateflow block and some supporting Simulink
blocks. The contents of the Stateflow block is a simple Stateflow diagram. As you proceed through the
following sections, you improve both the Stateflow diagram and the Simulink model that calls it. In
the process, you increase your knowledge and understanding of Stateflow states and transitions.

Building an On-Off Control Model
(p. 2-2)

Get started quickly building a control model with
Stateflow.

Simulating a Stateflow Diagram
(p. 2-22)

Simulate the control model normally and with the
Stateflow Debugging window.

Guarding Transitions with Event
Triggers (p. 2-36)

Guard the transitions of a Stateflow diagram to execute
only with the occurrence of specific events.

Modifying Output Data with Actions
(p. 2-50)

Send modified data from a Stateflow diagram to the
Simulink model.

Simulating Event Triggers and
Modified Output Data (p. 2-55)

Simulate the guarded transitions and modified output
data of the improved control model.

2 Controlling with States and Transitions

2-2

Building an On-Off Control Model
In this section, you start learning how to use Stateflow by creating a Simulink
model with a single Stateflow block that provides on-off control. This model is
the basis for further improvements that you add and test in the remainder of
this Getting Started guide. As you continue to build and improve the growing
model, you learn how to use Stateflow in Simulink models.

Use the following procedure topics to create a simple control model with on-off
control:

1 “Creating a Simulink Model with a Stateflow Block” on page 2-3 — Start a
model in Simulink containing a Stateflow block.

2 “Saving a Simulink Model” on page 2-5 — Save and name the Simulink
model as soon as you create it.

3 “Opening the Diagram for a Stateflow Block” on page 2-6 — Open the
Stateflow diagram for the Stateflow block in the Simulink model.

4 “Drawing States in Stateflow Diagrams” on page 2-7 — Start editing the
Stateflow diagram by drawing states.

5 “Drawing Transitions in a Stateflow Diagram” on page 2-10 — Draw
transitions between the states of the Stateflow diagram.

6 “Adding a Trigger Event to the Stateflow Diagram” on page 2-14 — Define
the input event from Simulink that triggers the execution of the Stateflow
diagram in the Simulink model.

7 “Sending a Trigger Event to the Stateflow Chart” on page 2-16 — Program
the Simulink model to send a trigger event to test the execution of the
Stateflow diagram.

Building an On-Off Control Model

2-3

Creating a Simulink Model with a Stateflow Block
In Simulink, you use blocks to create a simulated model of a physical plant.
Stateflow blocks are a part of Simulink models. You use Stateflow blocks in
Simulink models to control objects in the physical plant, for example, a motor,
a pump, or a fan.

In this topic, you begin the process of building an example model that uses
Stateflow on-off control. Create and save a Simulink model with a single
Stateflow block in it using the following steps:

1 At the MATLAB prompt, enter sfnew.

Stateflow displays the following untitled Simulink model window with a
Stateflow block labeled Chart.

2 Controlling with States and Transitions

2-4

2 In the Simulink window, under the Stateflow block, click in the text Chart.

A text cursor appears for you to edit the label of the block.

3 Replace the text Chart with the text Controller and click outside of the
block label when finished.

This gives the Stateflow block the new name Controller, as shown.

Now that the Stateflow block is labeled Controller, you refer to this block in
the Simulink model as the “Controller Stateflow block” or just the
“Controller block.”

Building an On-Off Control Model

2-5

Saving a Simulink Model
You start building a Simulink model in “Creating a Simulink Model with a
Stateflow Block” on page 2-3. Before going any further, save your model with
the following steps:

1 In the Simulink model window, from the File menu, click Save As.

The Save As dialog appears.

2 In the File name field, enter the file name SFcontrol1.

The name of the file in which you save the model is the name of the Simulink
model, which is now SFcontrol1.

3 In the Save in field and the pane below, select a directory in which to save
the new Simulink model.

4 Click the Save button to save the model.

When you save your model, Stateflow creates an sfprj directory in the
directory holding the project file. This directory is used to hold model
information.

Once you have saved your model file the first time, you can save it again by
selecting Save from the File menu.

2 Controlling with States and Transitions

2-6

Opening the Diagram for a Stateflow Block
You use Stateflow blocks to program the control of an object in the physical
plant that you model in Simulink. For example, you might want the Stateflow
block to decide if plant pressure or temperature is too high and make a decision
to turn on a motor-driven device to reduce plant temperature or pressure. You
program this control in a Stateflow diagram for a Stateflow block in Simulink.

Open the Stateflow diagram for the Controller block as follows:

1 In the Simulink window, double-click the Controller block.

An empty Stateflow diagram editor window appears, as shown.

In the empty window you just opened, notice the following:

- The name of the Stateflow block for the diagram you are editing
(Controller) appears in the title bar of the window preceded by its owning
Simulink model (SFcontrol1).

- The toolbar on the left is for drawing the different graphical objects that
compose a Stateflow diagram. Take note of the drawing tools that you use
in drawing a Stateflow diagram for the Controller block in this section: the
State tool and the Default Transition tool.

State tool

Default Transition tool

Title bar

Building an On-Off Control Model

2-7

Drawing States in Stateflow Diagrams
You program the control behavior for a Stateflow block in its Stateflow
diagram. In “Opening the Diagram for a Stateflow Block” on page 2-6, you open
the empty Stateflow diagram for the Controller Stateflow block. Now you need
to graphically program it with its control behavior.

States are objects in a Stateflow diagram that represent modes of operation for
a control device. In this example, a control device has two states of operation:
on and off. Start programming the Stateflow diagram for the Controller block
by drawing the states On and Off in the following steps:

1 In the drawing toolbar on the left, click the State tool .

2 Move the cursor into the drawing area and notice that the cursor takes the
shape of a box with rounded corners.

3 In the upper-left corner of the drawing area, click to place a new state, as
shown.

A highlighted state appears with a blinking text cursor in the upper-left
corner of the state, as shown.

2 Controlling with States and Transitions

2-8

4 Enter the text On and click outside of the state.

This gives the new state the name On. You enter the name for a state at the
beginning of its label.

The Stateflow diagram editor should now have the following appearance:

Building an On-Off Control Model

2-9

5 Use the preceding steps to draw and label a new state in the lower-right
corner of the Stateflow diagram editor with the name Off, as shown.

Stateflow diagrams are a form of a finite state machine. Finite state machines
use states to represent the possible control modes of an object. You have just
created two states named On and Off. These two states represent the two
control modes for a single-speed fan: on and off. But they can also represent the
control modes of a host of other devices that can be on or off, such as a light
switch, a heater, and so on.

2 Controlling with States and Transitions

2-10

Drawing Transitions in a Stateflow Diagram
States in a Stateflow diagram can be active or inactive. In “Drawing States in
Stateflow Diagrams” on page 2-7, you draw an On state and an Off state for the
SFcontrol1 model. An active Off state indicates the device you are controlling
is off, and an active On state indicates that the device is on.

Because a device such as a motor or a fan cannot be on and off at the same time,
only one state can be active at a time. The diagram needs to define a way to
change the control state of the device from Off to On and from On to Off.
Transitions in a Stateflow diagram define a path along which an active state
can become inactive and another state can become active. In this topic, you
draw transitions between the Off state and the On state with the following
steps:

1 Position the cursor at a straight portion of the left border of the Off state as
shown.

Notice that cross-hairs appear in place of the cursor. Cross-hairs do not
appear if you place the cursor on the corner of a state. There, an angled
double-arrow appears for resizing the state. Corners are used exclusively for
resizing.

Cursor becomes cross-hairs
next to state border

Building an On-Off Control Model

2-11

2 When the cursor changes to cross-hairs, click-drag the mouse to the bottom
border of the On state and release the mouse.

The Stateflow diagram now has a transition similar to the following:

Notice that a transition is directional. This transition proceeds from the Off
state to the On state. This means that if the Off state is active, the On state
can become active and the Off state inactive through this transition.

Transition from state Off to state On

2 Controlling with States and Transitions

2-12

3 Use the preceding steps to draw a transition from the right side of the state
On to the top of the state Off as shown.

This transition proceeds from the On state to the Off state. This means that
if the On state is active, the Off state can become active and the On state
inactive through this transition.

Transition from state On to state Off

Building an On-Off Control Model

2-13

You need to add one last transition to tell the Stateflow diagram which of the
two states, Off or On, is active when the Stateflow diagram starts operating.
You use a default transition to specify the Off state as the first active state with
the following steps:

4 In the drawing toolbar, click the Default Transition tool .

5 Move the cursor into the drawing area.

Notice that the cursor is an arrow pointing down and to the right.

6 Move the cursor to the right side of the top border of the Off state.

When the cursor’s arrowhead touches the top border of the Off state, it snaps
straight up and down, as shown.

Cursor for default transition
at border of Off state

2 Controlling with States and Transitions

2-14

7 Release the mouse and click an empty part of the diagram.

You should now see a default transition pointing to the Off state, as shown.

Adding a Trigger Event to the Stateflow Diagram
A Stateflow diagram updates (executes) only in response to an event that it
receives from Simulink. In “Drawing Transitions in a Stateflow Diagram” on
page 2-10 you provide transitions for the On and Off states to alternately
become active and inactive during execution of the Controller Stateflow
diagram. Now you need to provide events to Stateflow to update the Stateflow
diagram and power its transitions.

In this topic, you define trigger events for the example Stateflow diagram.
There are other ways to send events that update Stateflow diagrams. For
example, you can tell the Stateflow diagram to execute every time Simulink
samples the model. However, trigger events give you the greatest individual
control over individual events sent to a Stateflow diagram, and that makes
them the best events for studying Stateflow behavior.

Default transition

Building an On-Off Control Model

2-15

Use the following steps to define a trigger event for updating the Controller
diagram:

1 In the Stateflow diagram editor, from the Add menu, select Event.

2 In the resulting submenu, select Input from Simulink.

The property dialog for the new event appears.

By default, the name of the event is set to event in the Name field of the
Event properties dialog.

3 Select Either as the Trigger type.

4 Click OK to apply the changes and close the Event properties dialog.

2 Controlling with States and Transitions

2-16

The Stateflow block in Simulink now has a trigger port for the event event as
shown.

Sending a Trigger Event to the Stateflow Chart
You define a trigger event for the Controller diagram in “Adding a Trigger
Event to the Stateflow Diagram” on page 2-14. The Controller block in
Simulink now has a trigger port for the event event. To update the Controller
diagram, the Simulink model must send a signal to the trigger port to trigger
the event in the Controller diagram.

You defined the trigger event event with an Either trigger (either rising or
falling) for the Controller diagram. This event occurs when a control signal
attached to the trigger port for the Controller diagram rises or falls in value as
it passes through zero. In the following steps, use a manual switch to provide
a control signal from Simulink that rises or falls to trigger the event event in
the Controller diagram.

New trigger port

Building an On-Off Control Model

2-17

1 In the Simulink window, click-drag the Controller block down and to the
right as shown.

2 From the Simulink View menu, select Library browser.

The Simulink Library Browser window opens with the Simulink node
expanded.

Sources node

2 Controlling with States and Transitions

2-18

3 Under the Simulink node, select the Sources node.

The right pane of the Simulink Library Browser window displays the block
members of the Sources library.

4 From the right pane of the Simulink Library Browser window, click-drag
the Constant block to the left of the Stateflow block in the Simulink model.

Constant block

Building an On-Off Control Model

2-19

5 Add another Constant block to the left of the Controller as shown.

6 Double-click the bottom Constant block.

7 In the resulting Block Parameters dialog, in the Constant value field,
enter a value of -1 and click OK to close the dialog.

8 In the Simulink Library Browser window, select the Signal Routing node.

2 Controlling with States and Transitions

2-20

9 From the contents of the Signal Routing library in the right pane of the
Simulink Library Browser window, click-drag a Manual Switch block to
the right of the Constant blocks as shown.

10 Connect the Constant blocks to the poles of the Manual Switch as shown.

Building an On-Off Control Model

2-21

11 Connect the output of the Manual Switch to the Controller block trigger port
as shown.

During testing, you change the pole position of the Manual Switch (from -1
to 1 or from 1 to -1). This sends a rising or falling signal to the Controller
diagram that crosses zero. Because you defined the event event in the
Controller diagram with an Either trigger, either signal is recognized by the
Controller diagram as the event event, and the diagram executes.

12 Save the model (as SFcontrol1).

2 Controlling with States and Transitions

2-22

Simulating a Stateflow Diagram
After you build the Simulink model described in “Building an On-Off Control
Model” on page 2-2, you naturally want to test it. You test Simulink models in
a process called simulation. During simulation, Stateflow diagrams generate a
graphical display that informs you of the transition that is executing and the
currently active state. In this way, you can find out if a Stateflow diagram is
behaving the way you expect it to, and make appropriate changes, if required.

Use the following procedure topics to simulate the Controller Stateflow
diagram in the SFcontrol1 model:

1 “Setting Up Diagram Simulation” on page 2-22 — Define simulation
parameters for the Simulink model.

2 “Simulating a Stateflow Diagram” on page 2-25 — Go through the steps of
simulating your model.

3 “Using the Debug Tool During Simulation” on page 2-31 — Use the debug
tool to slow down and gain step-by-step control of simulation.

Setting Up Diagram Simulation
By default, simulation is enabled in Simulink and Stateflow models. To be sure
that it is enabled for the SFcontrol1 model, use the following steps to set up
simulation for the Controller Stateflow diagram:

1 In the Stateflow diagram window, from the Simulation menu, choose
Configuration Parameters.

The Configuration Parameters dialog appears as shown.

Simulating a Stateflow Diagram

2-23

2 In the Stop time field, enter inf and click OK to apply the changes and close
the dialog.

The stop time value of inf tells Simulink to simulate your model indefinitely
until you tell it to stop.

3 In the Stateflow diagram editor, from the Tools menu, select Open
Simulation Target.

The Stateflow Target Builder dialog appears as shown.

2 Controlling with States and Transitions

2-24

4 In the Stateflow Target Builder dialog, click Coder Options.

The Stateflow sfun Coder Options dialog appears as shown.

5 Make sure that the check box to Enable debugging/animation is selected,
then click OK to apply the change and close the Stateflow sfun Coder
Options dialog.

6 In the remaining Stateflow Target Builder dialog, click OK to close it.

Make sure this option is checked

Simulating a Stateflow Diagram

2-25

7 From the Stateflow diagram editor Tools menu, select Debug.

The Stateflow Debugging dialog appears as shown.

8 In the Animation section, make sure that the Enabled radio button is
selected and the Delay (sec) field is set to 0.6.

Entering a larger value in the Delay (sec) field slows down simulation. A
smaller value speeds simulation up.

9 Click Close to apply the change and close the Stateflow Debugging
window.

Simulating a Stateflow Diagram
Stateflow allows you to observe the behavior of Stateflow diagrams in Simulink
models during simulation of the model. Before you simulate a Stateflow
diagram, you make sure that simulation is enabled for your model as you did
in “Setting Up Diagram Simulation” on page 2-22.

When you simulate a Simulink model containing Stateflow blocks, Stateflow
builds an application for each Stateflow block that graphically executes its
Stateflow diagram by highlighting the active state and the executing
transition. By simulating your Stateflow diagrams, you understand the

Make sure Animation
is set to Enabled

Select a delay value of 0.6

2 Controlling with States and Transitions

2-26

behavior that you specify for them, and find out if they are behaving as you
expect them to.

Simulate the SFcontrol1 model as described in the following steps:

1 Before you begin simulating the SFcontrol1 model, position the Simulink
model window and the Controller Stateflow diagram window so that they
can both be seen at once with no overlap.

2 From the Stateflow diagram editor Simulation menu, select Start to start
simulation of the model and notice the following:

- Stateflow temporarily sets the model to read-only to prevent accidental
modification while the model is simulating.

This is displayed as “Ready (ICED)” at the bottom of the Stateflow
diagram window, where “ICED” is an internal Stateflow designation.

- Stateflow parses the Controller Stateflow diagram for errors.

Parsing the Stateflow diagram ensures that the notations you specified
are valid and correct. If any critical errors are found, they are displayed in
a Stateflow Builder window and simulation is halted. If no errors are
found, the window does not appear, and simulation continues.

The following example window results from an error introduced into the
Controller diagram by removing the name of the On state.

Simulating a Stateflow Diagram

2-27

Critical error messages are displayed with a red button. You can display
the full text of an error message in the bottom pane by clicking on it in the
top pane. If you double-click an error message in the top pane, the
Stateflow diagram editor appears with the error-causing object
highlighted.

- Stateflow displays status messages in the MATLAB Command Window
while it builds the simulation application.

The simulation application that Stateflow generates for simulation is
referred to as an sfun target. Stateflow creates a directory called sfprj in
the current MATLAB directory if the directory does not already exist.
Stateflow uses this directory to store the generated files that make up the
sfun target.

Simulation commences when the Stateflow diagram editor background
becomes shaded as shown.

Stateflow begins in simulation
mode. The Controller diagram is
active, but nothing in it is.

2 Controlling with States and Transitions

2-28

3 In the Simulink window, double-click the Manual Switch.

This causes the Manual Switch to switch between its inputs, -1 and 1.
Because the trigger event for the Controller block is set to Either, changing
the switch in either direction (1 to -1 or -1 to 1) sends a falling edge or rising
edge signal to the Controller block that recognizes it as the event event.

The event causes the Stateflow diagram to execute and look for the first
available transition, which is the default transition into the state Off. You
see the following simulation sequence:

The only available transition, the
default transition, is taken.

The destination state of the default
transition, the state Off, is entered,
becomes active, and stays active
until another event occurs.

Simulating a Stateflow Diagram

2-29

4 In the Simulink window, double-click the Manual Switch.

This sends another event event that causes the Stateflow diagram to look
for an available transition. You see the following continued simulation
behavior:

The only available transition from
the active state Off to another state
is the transition to the state On.
The transition to On is taken.

The Off state is exited and the
destination state On is entered,
becomes active, and stays active.

2 Controlling with States and Transitions

2-30

5 In the Simulink window, double-click the Manual Switch.

This sends another event event that causes the Stateflow diagram to look
for an available transition. You see the following continued simulation
behavior:

6 Continue sending events by double-clicking the Manual Switch in the
Simulink window to repeat the sequence in the preceding steps 4 and 5.

7 Choose Stop from the graphics editor Simulation menu to stop the
simulation.

Once the simulation stops, Stateflow resets the model to be editable.

The only available transition from
the active state On is the transition
to the Off state. The transition to
the state Off is taken.

The On state is exited and the
destination state Off, is entered,
becomes active, and stays active.

Simulating a Stateflow Diagram

2-31

Using the Debug Tool During Simulation
In “Simulating a Stateflow Diagram” on page 2-25, Stateflow highlights
executing transitions and active states. You can enhance normal Stateflow
simulation with the Stateflow Debugging tool. This tool lets you step through
individual Stateflow actions that are not identified to you in normal
simulation. By identifying all Stateflow diagram actions, the Debugging tool
gives you insight into Stateflow behavior, and helps eliminate any doubts you
may have about how your Stateflow diagrams work.

The following steps show you how to step through a simulation of the
Controller Stateflow diagram using the Stateflow Debugging tool:

1 In the Stateflow diagram editor, from the Tools menu, select Debug.

The Stateflow Debugging window appears as shown.

2 Select the Chart Entry breakpoint.

This pauses execution when the diagram is entered after it is triggered by
an event from the Manual Switch.

3 Position the Stateflow Debugging window so that you can see it, the
Simulink model window, and the Controller Stateflow diagram window at
the same time.

Start button.

Select this breakpoint

Changes to Continue
after simulation starts.

2 Controlling with States and Transitions

2-32

4 In the Stateflow Debugging window, click Start to start the simulation.

When simulation begins, the Start button is relabeled to a Continue button
and both the Continue and Step buttons are disabled. This means that the
Controller diagram is inactive (asleep) and waiting for an event.

5 In the Simulink window, double-click the Manual Switch block to send an
event to the Controller diagram.

The Debugging window now displays information in its top pane with the
following labels:

- Stopped — What is being processed in the current step.

- Executing — The Stateflow diagram executing. In this example, this will
always be Controller.

- Current Event — The current event being processed. In this example, this
will always be the event event.

- Simulink Time — The simulation time of the model.

Simulation running....

This message appears in the top
pane of the Debugging window. It
indicates that the simulation is
running, but there are no events to
process. The Controller diagram is
active, but asleep.

Simulating a Stateflow Diagram

2-33

For now, pay attention only to the Stopped message. This message indicates
what is taking place in the current simulation step. It is included with the
examples that follow.

6 In the Stateflow Debugging window, click Step to advance simulation by a
step.

Stopped: Entry: Chart
Controller

Indicates that this step is taking
place while the Controller diagram
is active and ready to respond to
events.

Stopped: After activation of
Transition ?

The Controller diagram is
processing its default transition.
The Debugging window refers to
the identity of the current transition
by its label. Because the Default
Transition has no label, its label is
referred to with a question mark
character (?).

2 Controlling with States and Transitions

2-34

7 Click Step to advance simulation by a step.

8 Click Step to advance simulation by a step.

Stopped: Just after activation
of State Off.

State Off is entered and is now
active.

Stopped: After broadcast of
Input event event.

All response activity to the event
event is finished. The event has
been consumed.

Simulating a Stateflow Diagram

2-35

9 Click Step to advance simulation by a step.

10 In the Simulink model, continue indefinitely to double-click the Manual
Switch block to send another event to the Controller diagram and advance
simulation to the next active state with the Step button.

11 When you are finished debugging, in the Debugging window, click Stop
Simulation to stop the simulation.

Once the simulation stops, the model becomes editable.

12 In the Debugging window, click Close to close it.

The Stateflow Debugging window is an important tool for studying Stateflow
semantics, the description of the behavior of Stateflow objects in Stateflow
diagrams. Even though the Stateflow Debugging window is not used
throughout the remainder of this guide, you are encouraged to use it whenever
you want to clarify Stateflow semantics in your models.

Simulation running....

The Controller diagram is active but
asleep. In this phase, it is waiting
for an event to wake it and be
processed. The Continue and Step
buttons are disabled until another
event occurs.

2 Controlling with States and Transitions

2-36

Guarding Transitions with Event Triggers
The transitions for the Controller Stateflow diagram in the SFcontrol1 model
that you build in “Building an On-Off Control Model” on page 2-2 react to the
event event. However, these transitions react the same to any event, whether
it is named event, x, y, z, or whatever. This means that any event sent to the
Controller Stateflow diagram results in taking a transition.

You can restrict transitions to react only to specific events with event triggers.
In the following procedure topics, you add event triggers to the Controller
Stateflow diagram and test them with trigger events that you add to the
Simulink test interface:

1 “Adding Event Triggers to Transitions” on page 2-36 — Use event triggers
to restrict the transitions between the On and Off states to the events
on_switch and off_switch.

2 “Adding Multiple Trigger Events to a Stateflow Chart” on page 2-42 — Add
the events on_switch and off_switch to the Stateflow diagram.

3 “Sending Multiple Trigger Events to a Stateflow Chart” on page 2-46 —
Send the on_switch and off_switch events to the Controller Stateflow
diagram from the Simulink interface for testing.

Adding Event Triggers to Transitions
If you want a transition to respond only to a specific event, you specify an event
trigger for the transition in its label. An event trigger limits the response of its
transition to the occurrence of the named event.

In this topic, you add an event trigger to each of the transitions between the On
and Off states of the Controller Stateflow diagram with the following steps:

1 If not already loaded, load the Simulink model SFcontrol1 you build in
“Building an On-Off Control Model” on page 2-2 and save it as SFcontrol2.

Guarding Transitions with Event Triggers

2-37

2 Click the transition from the state Off to the state On.

The transition highlights to show that it is selected. Also, a question mark
character (?) appears next to the point on the transition that you clicked as
shown.

3 Place the mouse cursor over the question mark character.

Question mark where you
clicked on transition

2 Controlling with States and Transitions

2-38

4 When the mouse cursor changes to a text cursor, click the mouse.

A blinking text cursor appears in place of the question mark, as shown.

Blinking text cursor for label
in highlighted transition

Guarding Transitions with Event Triggers

2-39

5 Type the text on_switch and click a location outside the transition.

You should now see the following label for the transition from the state Off
to the state On.

The transition label that you entered (on_switch) is an event trigger. Event
triggers are part of the syntax for transition labels. A transition event
trigger watches for the event it is named after. If the event on_switch occurs
and the Off state is active, the transition to the On state is taken. The
transition is not taken for any other event. This provides the Stateflow
diagram the ability to change the active state from the Off state to the On
state when it receives a specific event that is meant to turn the device on.

Transition label immediately
after editing it

2 Controlling with States and Transitions

2-40

6 Click-drag the on_switch label to a point outside its transition and then
click an empty part of the diagram.

You can click-drag the label for a transition to any point in the Stateflow
diagram to change the appearance of the diagram. If the two get separated,
you can always tell what transition a label belongs to by clicking on the
label. When you do, both the label and its transition become highlighted.
Similarly, when you click on the transition, both the transition and its label
become highlighted.

You should now see something like the following:

Label in new position

Guarding Transitions with Event Triggers

2-41

7 Use the preceding steps to label the transition from the state On to the state
Off with off_switch as shown.

Event triggers control the execution of the transitions that they guard. Before
you added the event triggers, the transitions from the Off to the On state and
the On to the Off state take place in response to any event. Now the Stateflow
diagram responds only to the events named in the event triggers.

Note Never add an event trigger to the default transition for the diagram. By
definition, the default transition for a diagram transitions to its destination
state when the diagram is started. If the first event that starts the diagram
does not trigger the default transition, it is never taken, and the diagram does
not execute.

2 Controlling with States and Transitions

2-42

Adding Multiple Trigger Events to a Stateflow Chart
In “Adding Event Triggers to Transitions” on page 2-36, you use the names of
the events to specify event triggers for transitions that execute only with the
occurrence of one of these events. To use these event triggers, you must also
define the events that enable them for the Controller Stateflow diagram.

Define the two events on_switch and off_switch for the Controller Stateflow
diagram with the following steps:

1 In the Stateflow diagram editor, from the Add menu, select Event.

2 In the resulting submenu, select Input from Simulink.

The Event dialog for a new event, event1, appears.

Notice that the middle Port field is set to a value of 2.

3 In the Name field, enter off_switch.

4 In the Trigger field, select Falling.

5 Click OK to apply the changes and close the Event dialog.

Guarding Transitions with Event Triggers

2-43

6 Repeat step 1 through step 5 to add the event on_switch with a scope of
Input from Simulink, and a Rising trigger.

You have now defined the events on_switch and off_switch in the
Controller Stateflow diagram. The event off_switch has a Falling trigger
and the event on_switch has a Rising trigger. The event off_switch occurs
only when the control signal attached to the Stateflow block trigger port falls
in value as it passes through zero. The event on_switch occurs only when
that control signal rises as it passes through zero.

7 In the Stateflow diagram editor, from the Tools menu, select Explore.

The Model Explorer window appears, as shown.

2 Controlling with States and Transitions

2-44

Model Explorer is a tool that lists nongraphical objects for all Simulink
objects, including Stateflow objects. Events are nongraphical objects. Model
Explorer is the only place to change or delete events.

The left Model Hierarchy pane lists the Stateflow objects for the model
SFcontrol2, which includes the model itself. To see some of these objects,
you need to expand the Controller diagram that contains them. The right
Contents pane lists the nongraphical objects owned by the highlighted
object in the Model Hierarchy pane.

The Controller diagram is highlighted in the Model Hierarchy pane and the
Contents pane shows the events that you have added to it. These include the
off_switch and on_switch events and the event event you added in the
previous section. Notice that these events are indexed in the Port column in
the order that they were added: (1) event, (2) off_switch, and (3)
on_switch.

Guarding Transitions with Event Triggers

2-45

8 In the Contents pane, click the row for the event event to highlight it.

9 Press the Delete key.

The row for the event event disappears and the event is deleted. Notice that
the indexing for the remaining events is automatically adjusted from three
to two elements: (1) off_switch, and (2) on_switch.

2 Controlling with States and Transitions

2-46

Sending Multiple Trigger Events to a Stateflow Chart
In “Adding Event Triggers to Transitions” on page 2-36, you replace the trigger
event event with two trigger events: off_switch and on_switch. Even though
you added multiple events, the trigger port in the Simulink test interface for
the Controller block has the same appearance as before.

Each event requires a trigger signal to generate its event with a rise or fall in
signal. However, Stateflow blocks have only one trigger port for receiving
trigger signals. This means that each signal must be indexed into an array of
two trigger signals.

Guarding Transitions with Event Triggers

2-47

Provide two trigger signals to the single trigger port of the Controller Stateflow
block with the following steps:

1 Click the signal line from the Manual Switch to the Controller block and
press Delete to delete it as shown.

2 Click on the Manual Switch block label and rename it as follows:

on_switch
off_switch

2 Controlling with States and Transitions

2-48

3 In the Simulink Library Browser, under the Simulink node, in the Signal
Routing library, click-drag a Mux block to the right of the Manual Switch
block.

By default, the Mux block has two inputs that are joined in an array to a
single output.

4 Connect the output of the Manual Switch to both inputs of the Mux block.

This sends the same signal from the Manual Switch to the input ports on the
Mux.

New Mux block

Output of Manual Switch
connected to both
Mux input ports

Guarding Transitions with Event Triggers

2-49

5 Connect the output side of the Mux block to the trigger port as shown.

The top input port of the mux now connects with the trigger event of index
1, off_switch. The bottom port connects with the trigger event of index 2,
on_switch. During simulation, when you toggle the Manual Switch from -1
to 1, you send a rising trigger signal to both signal inputs of the trigger port.
Only the on_switch event port reacts by sending an on_switch event to the
Controller Stateflow diagram. Likewise, when you toggle the Manual Switch
from 1 to -1, you generate an off_switch event.

6 Save the model (as SFcontrol2).

Output of Mux connects to
trigger port of
Controller block

2 Controlling with States and Transitions

2-50

Modifying Output Data with Actions
If you are simulating a model with a control device such as a motor, the
Stateflow diagram needs to hand over to Simulink some indication of the state
that the motor is in to continue the simulation. You can imagine that such
information might inform the model that the motor is on and now providing
cooling or heating to the model, or that the motor is off and plant temperature
or pressure is increasing accordingly.

Use the following procedure topics to output modified data from the Controller
Stateflow diagram to the Simulink test interface:

1 “Adding State Entry Actions” on page 2-50 — Program the Controller
Stateflow diagram to modify data from Simulink in the entry action of the
active state.

2 “Adding Output Data to the Stateflow Chart” on page 2-52 — Pass Stateflow
modified data from the Controller diagram to the Simulink model.

3 “Sending Stateflow Output Data to Simulink” on page 2-54 — Receive
modified data from the Controller Stateflow diagram in the Simulink model
and display it.

Adding State Entry Actions
You modify data in Stateflow with actions. Actions are programming lines that
you add to states or transitions in Stateflow diagrams. In this topic, you use
state entry actions to change a data value that provides control information to
the Simulink model. For now, assume that your diagram defines a data named
speed that you pass to the Simulink model. You add a state entry action to
modify the value of speed to indicate the speed of a device (for example, a
motor) that you are controlling to the Simulink model.

Add entry actions to the labels of the states On and Off to modify the data
speed with the following steps:

1 Place the mouse cursor over the name of the On state.

Notice that the mouse cursor changes to a text cursor over the state label.

Modifying Output Data with Actions

2-51

2 Click when the text cursor is at the end of the name of the On state.

This highlights the state and its label and a blinking text cursor appears at
the end of the label, which contains only the name On.

3 Press Enter and enter the following text line.

en:speed = 1;

4 Click outside of the state when finished entering text.

The Controller Stateflow diagram should appear similar to the following:

The label for the On state now includes a name for the state (On) and an
entry action, which is identified by the prefix en:. This entry action assigns
the data speed a value of 1 when the state On becomes active.

Entry action for state On

2 Controlling with States and Transitions

2-52

5 Repeat the preceding steps to add the following entry action to the state Off:

en:speed = 0;

The Controller Stateflow diagram should appear similar to the following:

Adding Output Data to the Stateflow Chart
In “Adding State Entry Actions” on page 2-50, you modify the data speed in
state entry actions that you intend to pass to the Simulink model. Before you
can use speed as data in the Controller diagram, you must define it to the
Controller diagram as data passed to the Simulink model.

Use the following steps to define the data speed as output to Simulink for the
Controller Stateflow diagram:

1 In the Stateflow diagram editor for the Controller block, from the Add menu,
select Data.

2 In the resulting submenu, select Output to Simulink.

The property dialog for the new data appears.

Entry action for state Off

Modifying Output Data with Actions

2-53

3 In the Name field of the data properties dialog, enter speed.

4 Click OK to apply the changes and close the window.

An output port for the data speed now appears on the right side of the
Controller Stateflow block in the Simulink model as shown.

Output to Simulink port
for data speed

2 Controlling with States and Transitions

2-54

Sending Stateflow Output Data to Simulink
In “Adding Output Data to the Stateflow Chart” on page 2-52, you define data
output to the Simulink model for the Controller Stateflow diagram. This
creates an output port for the data speed that now appears on the right side of
the Controller Stateflow block in the Simulink model. This output port gives
the Simulink model access to the data speed defined for, and modified in, the
Controller Stateflow diagram.

In this topic, you demonstrate that the Simulink model receives the data speed
from the Controller Stateflow diagram by displaying it in the Simulink model
with the following steps:

1 From the Simulink Library Browser, in the Simulink Sinks library, add a
Display block to the right of the Controller Stateflow block as shown.

2 Connect the output port for the data speed on the Controller Stateflow block
to the Display block as shown.

When you simulate the model, the Controller block modifies the value of the
data speed, which it passes on to the Simulink model for display.

3 Save the model (as SFcontrol2.mdl).

Simulating Event Triggers and Modified Output Data

2-55

Simulating Event Triggers and Modified Output Data
In this section, you test the features that you add to the Controller diagram and
the Simulink block of the SFcontrol2 model in the following previous sections:

• “Guarding Transitions with Event Triggers” on page 2-36

• “Modifying Output Data with Actions” on page 2-50

It is important to test new features that you add to the model to make sure that
they behave as you expect. Test the new features by simulating the Controller
diagram of the SFcontrol2 model with the following steps:

1 In the Simulink diagram, make sure that the Manual Switch points
downward to the -1 pole. If not, double-click it to change its position.

2 Choose Start from the Stateflow diagram editor Simulation menu to start
simulation of the model.

After a small delay during which the model builds, simulation of the
Controller Stateflow diagram begins in the Stateflow diagram editor with
the introduction of a gray background as shown.

Stateflow begins in simulation
mode. The Controller diagram is
active, but nothing in it is.

2 Controlling with States and Transitions

2-56

3 In the Simulink model, double-click the Manual Switch to move it from the
-1 pole to the 1 pole.

Since on_switch is a rising edge triggered event, the rise in signal from -1 to
1 sends an on_switch event to the Controller block. The Controller diagram
responds as follows:

The on_switch event causes the
Controller diagram to look for an
available transition. The only
available transition is the default
transition. Because this transition
is not guarded, it reacts to any
event, and is therefore taken.

The destination state of the default
transition, the state Off, is entered.
Also, the data speed is set to a value
of 0 as part of the entry action for
the state Off. The state Off remains
active until another event is sent to
the Controller diagram.

Simulating Event Triggers and Modified Output Data

2-57

4 In the Simulink model, double-click the Manual Switch to move it from the
1 pole to the -1 pole.

Since off_switch is a falling edge triggered event, the drop in signal from 1
to -1 sends an off_switch event to the Controller block. The Controller
diagram responds as follows:

The off_switch event causes the
Controller diagram to look for an
available transition. Only the
transition to the On state is
available. However, it is guarded by
an on_switch event trigger. No
transition takes place and the Off
state remains active.

2 Controlling with States and Transitions

2-58

5 In the Simulink model, double-click the Manual Switch to move it from the
-1 pole to the 1 pole.

Since on_switch is a rising edge triggered event, the rise in signal from -1 to
1 sends an on_switch event to the Controller block. The Controller diagram
responds as follows:

The on_switch event causes the
Controller diagram to look for an
available transition. Only the
transition to the On state is
available. Because it is guarded by
an on_switch event trigger, this
transition takes place.

The Off state is exited and the On
state is entered and becomes active.
Also, the data speed is set to a
value of 1 as part of the entry action
for the state On. The state On
remains active until another event
is sent to the Controller diagram.

Simulating Event Triggers and Modified Output Data

2-59

The value for speed is displayed in the Display block of the Simulink model
as shown.

Display of value for speed

2 Controlling with States and Transitions

2-60

6 In the Simulink model, double-click the Manual Switch to move it from the
1 pole to the -1 pole.

The fall in signal from 1 to -1 sends an off_switch event to the Controller
block. The Controller diagram responds as follows:

The off_switch event causes the
Controller diagram to look for an
available transition. Only the
transition to the Off state is
available. Because it is guarded by
an off_switch event trigger, this
transition takes place.

The On state is exited and the Off
state is entered and becomes active.
Also, the data speed is set to a
value of 0 as part of the entry action
for the state Off. The state Off
remains active until another event
is sent to the Controller diagram.

Simulating Event Triggers and Modified Output Data

2-61

The value for speed is displayed in the Display block of the Simulink model
as shown.

7 Continue to send events by double-clicking the Manual Switch in the
Simulink window to repeat the sequence in the preceding steps 5 and 6.

8 Choose Stop from the graphics editor Simulation menu to stop the
simulation.

Once simulation stops, Stateflow resets the model to be editable.

Display of value for speed

2 Controlling with States and Transitions

2-62

3

Controlling with Junctions

This chapter introduces you to new Stateflow objects that include junctions, functions, temporal
events, and superstates. These objects extend the use of states and transitions that form the basis of
Stateflow capability. Use the following sections to add new control features to the models you build in
Chapter 2, “Controlling with States and Transitions”:

Adding a Sensor to the Model (p. 3-2) Add the equivalent of a sensor to the Simulink model as
data and a regularly occurring event.

Adding a Junction for Flow Control
(p. 3-8)

Modify a Stateflow diagram to use junctions to add
control that chooses between state destinations. While
doing this, also learn how to edit diagrams.

Adding a Graphical Function for
Convenience (p. 3-19)

Use a graphical function to make a Stateflow diagram
more readable.

Simulating with a Sensor Event,
Junction, and Function (p. 3-25)

Simulate the junction and graphical function you added
to the example model.

Simulating Junction Behavior (p. 3-31) Demonstrate junction behaviors with small changes to
the model.

Introducing Stateflow Semantics
(p. 3-36)

Understand how Stateflow uses semantics in determining
the behaviour of diagrams and review the semantics rules
that you have learned in previous exercises.

Using Junctions in Flow Diagrams
(p. 3-37)

Use junctions without states to create visible
programming flow diagrams.

3 Controlling with Junctions

3-2

Adding a Sensor to the Model
In this topic, you add a temperature sensor to the model that you use to control
the speed of a device such as a motor, fan, or pump. A sensor has two primary
attributes: a value for the property it is measuring, and a regular time interval
during which a new value is reported. Normally, the value of a sensor is
reported as a voltage that must be converted to useful units such as degrees,
flow, capacity, and so on. For the sake of example, assume that the
temperature sensor reports the temperature directly in degrees Fahrenheit.

Use the following procedure topics to add a reporting sensor to the SFcontrol2
model you completed in Chapter 2, “Controlling with States and Transitions”:

1 “Adding a Sensor Event” on page 3-2 — Use the fluctuation in a signal to
send a periodic event to Stateflow, mimicking the periodic reporting that a
sensor makes of its value.

2 “Adding Sensor Data” on page 3-6 — Add data to Stateflow that represents
the value of a sensor.

Adding a Sensor Event
To take advantage of sensors monitoring a physical plant, you need to check
the sensor value at regular intervals. Proper control of a physical plant can be
maintained only if a sensor measurement reports at regular intervals. For
example, a controlling application might need to monitor the temperature or
pressure of a device every second. If it waits for an hour before the next
measurement is taken, undesired consequences can result.

You can simulate a sensor reading in Simulink with a regularly occurring
sensor event and sensor data representing the value reported by the sensor. In
Simulink, you use a regularly changing source to output a trigger event for
determining times during which you read the sensor value.

Use a sine wave source in Simulink to add a sensor event to trigger a Stateflow
block in the following procedure:

1 If not already loaded, load the Simulink model SFcontrol2 you save at the
end of “Modifying Output Data with Actions” on page 2-50 and save it as
SFcontrol3.

Adding a Sensor to the Model

3-3

2 In the Stateflow diagram editor, from the Add menu, select Event and add
an event named temp_event on port 3 with the scope Input from Simulink,
and a Rising trigger type.

A port for the new event temp_event does not appear in the Simulink model
because all input events are grouped into the trigger port at the top of the
Controller block.

Events grouped in one port

3 Controlling with Junctions

3-4

3 Double-click the Mux block and change its Number of inputs to 3.

4 Click-drag the top and bottom ends of the Mux block bar to show all three
ports clearly, as shown.

5 In the Simulink library browser, in the Sources library, click-drag a Sine
Wave block to a position under the Constant blocks that feed the Manual
Switch.

Adding a Sensor to the Model

3-5

6 Connect the Sine Wave block output to the bottom input of the Mux block.

7 Double-click the Sine Wave block and change the Frequency to 2*pi.

Because the event temp_event is a rising edge trigger, it is triggered
(broadcast) every time its input signal crosses zero while rising. Because the
Sine Wave block now outputs a complete sine wave every second,
temp_event is broadcast to the Stateflow diagram every second, as shown.

= trigger point

time (sec)

3 Controlling with Junctions

3-6

Adding Sensor Data
You can simulate sensors in Simulink with a sensor value and a time interval
for which the sensor reports its value. In “Adding a Sensor Event” on page 3-2,
you added an event to simulate the reporting time for a sensor. Now you need
to add a data value to the Stateflow block to simulate the value of the sensor in
the following steps:

1 In the Stateflow diagram editor, from the Add menu, select Data and add a
data named temp with scope Input from Simulink.

A port appears on the left side of the Controller block in the Simulink model
for the new data temp as shown.

Input data port
for temperature sensor

Adding a Sensor to the Model

3-7

2 Right-click the bottom Constant block and drag-copy a new Constant block
under the Sine Wave block.

3 Connect the output of the new Constant block to the input port for the data
temp on the left side of the Controller block as shown.

The source for the value of the data temp is the value of the Constant block.
You can change this value during simulation by double-clicking the
Constant block and entering a new value in the Constant value field in the
resulting Block Parameters dialog and clicking Apply.

4 Save the model (as SFcontrol3.mdl).

3 Controlling with Junctions

3-8

Adding a Junction for Flow Control
In “Adding a Sensor to the Model” on page 3-2, you add a simulated
temperature sensor to the Simulink model. The sensor has a value for the
temperature provided by the input data temp, and a periodic event temp_event,
that acts as a reporting time for the temperature. In this section, you add more
selective control based on the new temperature sensor, which reports the value
of the temperature to the Controller Stateflow diagram every second.

Add temperature control to the SFcontrol3 model in the following procedure
topics:

1 “Deleting, Copying, and Renaming Stateflow Objects” on page 3-8 — Alter
the Stateflow diagram by deleting a transition, copying a state, and
renaming two states.

2 “Adding and Connecting Junctions” on page 3-13 — Connect a junction in
the Stateflow diagram.

3 “Entering Transition Conditions” on page 3-16 — Enter conditions for
transitions and transition segments.

Deleting, Copying, and Renaming Stateflow Objects
Begin preparation of the Stateflow diagram for the SFcontrol3 model by
removing a transition from it in the following steps:

1 If necessary, load the SFcontrol3 model you built in “Adding a Sensor to the
Model” on page 3-2, and save it as SFcontrol4.

Adding a Junction for Flow Control

3-9

2 Double-click on the Stateflow block Controller to open the Stateflow diagram
as shown.

3 Select the transition from the Off state to the On state by clicking it at any
point in the transition.

The transition and its label highlight to a different color. You can select any
graphical Stateflow object by clicking it.

3 Controlling with Junctions

3-10

4 Press Delete.

The transition disappears as shown.

Continue altering the Stateflow diagram by copying and renaming states in
the following steps.

Adding a Junction for Flow Control

3-11

5 Right-click on any point in the On state and hold down the mouse key while
you drag a copy of the On state to a position just below as shown.

6 Click on either line of the label for the top On state to place a cursor in it.

3 Controlling with Junctions

3-12

7 Rename the top On state to the Hi state with the following label:

Hi
en:speed=2;

The On state becomes the Hi state. When Hi becomes active, its entry action
changes the value of the data speed to 2.

8 Rename the bottom On state as follows:

Lo
en:speed=1;

The state Lo represents a low speed state for the controlled device, such as
a motor. When it becomes active, it changes the value of the data speed to 1.

The Stateflow diagram should now have the following appearance:

Adding a Junction for Flow Control

3-13

Adding and Connecting Junctions
You use junctions to provide alternate paths for transitions. This lets the
Stateflow diagram choose the destination state for a transition based on a
condition or set of conditions. In this section, you add a junction that chooses
between two destination states for a transition based on the value of the
temperature. This represents the choice of one of two possible speeds for the
device you are controlling, such as a motor.

Place a junction between the two states Hi and Lo and connect it with the
following steps:

1 From the drawing toolbar on the left, click the Junction tool .

2 Move the cursor into the drawing area and place a junction between the
states Hi and Lo as shown.

3 Controlling with Junctions

3-14

3 Draw a transition from the top border of the junction to the bottom border of
the state Hi just as you would between two states.

4 Draw another transition from the junction down to the top of the state Lo.

The Stateflow diagram now has the following appearance:

Adding a Junction for Flow Control

3-15

5 Draw a transition from the top of the state Off to the right side of the
junction and label it with the event trigger on_switch as shown.

The transition from the Off state now has two possible destinations: Hi and Lo.
To make a choice between these destinations, you need to add a condition to one
of the transitions out of the junction in “Entering Transition Conditions” on
page 3-16.

3 Controlling with Junctions

3-16

Entering Transition Conditions
Transitions to and from junctions are referred to as transition segments.
Transitions, which, by definition, go from state to state, use transition
segments to make a complete transition. The transition segments you add in
“Adding and Connecting Junctions” on page 3-13 define two possible
destinations for the transition from Off: Hi or Lo. To know which of the two
destinations to take, you need to provide a logical decision.

Use the following steps to enter conditions on the transition segments from a
junction:

1 Label the transition from the junction to the state Hi with the condition
[temp >= 120] as shown.

If the Off state is active and an on_switch event occurs, the transition
segment to the junction is taken. Once the junction becomes active,
Stateflow searches for a valid outgoing transition segment. Stateflow always
gives higher priority to transitions that have conditions over other
transitions that have no conditions. This means that if the temperature of

Condition

Adding a Junction for Flow Control

3-17

the attic, temp, equals or exceeds 120 degrees, the attic fan enters the Hi
state. If not, the attic fan enters the Lo state. Once the Lo or Hi state
becomes active, no more transitions are taken in the diagram until another
event occurs.

2 Draw a transition from the Hi state to the Lo state and label it with the
conditions [temp < 120] as shown.

This transition allows the device you are controlling to transition to the Lo
state when the temperature of the controlled drops below 120 degrees.
Because this transition is from state to state, it requires a regular event
provided by the temperature sensor event, temp_event, which occurs every
second.

3 Controlling with Junctions

3-18

3 Draw a transition from the Lo state to the Off state and label it with the
event trigger off_switch as shown.

The Controller needs to stop the control device if it receives an off_switch
event and either the Lo or Hi state is active. The transition from Hi to Off
already takes care of part of this requirement. You add a similar transition
from the state Lo to the state Off with an off_switch event for the rest of
the requirement.

4 Save the current model (as SFcontrol4.mdl).

Adding a Graphical Function for Convenience

3-19

Adding a Graphical Function for Convenience
In “Adding a Junction for Flow Control” on page 3-8, you add a junction to the
Stateflow diagram to provide two-speed control to a control device such as a
motor. You can improve the compactness and readability of this diagram with
a graphical function that you add in the following procedure topics:

1 “Adding a Graphical Function” on page 3-19 — Add and program a small
graphical function to replace some lengthy conditions.

2 “Calling a Graphical Function” on page 3-24 — Call a graphical function
from the action language of a transition.

Adding a Graphical Function
You can shorten conditions on transitions with a graphical function. Add a
graphical function to the Stateflow diagram of sf_control4.mdl with the
following steps:

1 If not already loaded, load the Simulink model SFcontrol4 you save in
“Adding a Junction for Flow Control” on page 3-8 and double-click the
Stateflow block Controller to open it.

3 Controlling with Junctions

3-20

2 Resize the window by click-dragging the right border of the Stateflow
diagram to the right by about 3 inches.

3 In the Stateflow diagram editor, click the Graphical Function tool .

4 Place the cursor, now in the shape of the box, on the right side of the
diagram.

A highlighted function box appears with a blinking cursor in its upper-right
corner as shown.

Blinking cursor

Adding a Graphical Function for Convenience

3-21

5 Enter the text

r = hot()

and click outside the function box.

6 Place the mouse cursor over the lower-right corner of the function box.

The mouse cursor now appears as a double arrow.

7 Click-drag the function box corner to the right about three inches to resize
the function box as shown.

Resizing cursor

3 Controlling with Junctions

3-22

8 Select the Default Transition tool and place the mouse cursor inside
the function box in the lower-right corner and click.

This places a junction with an incoming default transition in the lower-right
corner of the function box as shown.

9 Click-drag the source of the default transition to the left side of the function
box as shown.

Default transition
into junction

Adding a Graphical Function for Convenience

3-23

10 Click the question mark (?) on the default transition and label it as follows:

{r = temp >= 120;}

The statement {r = temp >= 120;} is an example of a transition condition
action. A condition action is executed when the condition for its transition is
true. Because the default transition has no condition, its condition action is
executed automatically and the default transition is taken into the junction.
In this case, when the function hot is called, the logical result of the
comparison of the temperature with 120 is stored in the return data r.

A default transition into a junction is a type of flow diagram. Flow diagrams
use transitions and junctions. You can use more complicated flow diagrams
to represent common code structures like for loops and if-then-else
constructs without the use of states. Flow diagrams are discussed in more
detail later on in “Using Junctions in Flow Diagrams” on page 3-37.

11 Double-click the function box to group it.

This joins the function and the objects it contains into a group of objects that
you can move as a unit. The finished diagram should now appear similar to
the following:

3 Controlling with Junctions

3-24

Calling a Graphical Function
Once you make a function, you call it from a transition condition or one of the
actions of a state or transition. The function you added in “Adding a Graphical
Function” on page 3-19 returns the comparison value that you test for in the
transition segment from the junction to the state Hi. Use the following steps to
call the function hot in the condition of that transition segment:

1 Click on the transition from the junction to the state Hi.

2 Both the transition and its label become highlighted.

3 Edit the label to be [hot()].

4 Edit the label for the transition from state Hi to state Lo to be [!hot()], as
shown.

5 Save the model (SFcontrol4).

Simulating with a Sensor Event, Junction, and Function

3-25

Simulating with a Sensor Event, Junction, and Function
In this section, you test the features that you add to the Controller diagram and
the Simulink block in the SFcontrol4 model in the previous sections:

• “Adding a Sensor to the Model” on page 3-2

• “Adding a Junction for Flow Control” on page 3-8

• “Adding a Graphical Function for Convenience” on page 3-19

Test the new features by simulating the Controller diagram of the SFcontrol4
model with the following steps:

1 In the Simulink diagram,

- Make sure that the Manual Switch points downward to the -1 pole.

- Set the Constant block feeding the port temp on the Stateflow Controller
block to a value of 130.

The Simulink diagram should have the following appearance:

The Stateflow diagram editor for the Controller block should already be
open. If not, double-click the Controller block.

3 Controlling with Junctions

3-26

2 Choose Start from the Simulink window Simulation menu to start
simulation of the model.

The Stateflow diagram editor
updates with every broadcast
event. Because the temperature
sensor event, temp_event, is
broadcast every second, the
Stateflow diagram updates and
the default transition to state Off
is taken.

The only outgoing transition from
Off requires an on_switch event.
So Off stays active until you send
it that event.

Simulating with a Sensor Event, Junction, and Function

3-27

3 In the Simulink model, double-click the Manual Switch to move it from the
-1 pole to the 1 pole.

This sends an on_switch event to the Controller block. The Controller
diagram responds as follows:

The on_switch event causes the
Controller diagram to take the
transition to the junction guarded
by an on_switch event trigger.
The junction gives priority to the
outgoing transition with a
condition, which it tests. Because
hot returns a value of true, it is
taken.

The value for the data speed is
set to 2 (see Simulink Display
block) and the Hi state becomes
active, and stays active.

3 Controlling with Junctions

3-28

Notice that the function hot continues to be highlighted while the Hi state
is active.

This occurs because the event temp_event is broadcast to the diagram every
second. When a broadcast occurs, the diagram is updated, and the Hi state
looks for an outgoing transition. The only outgoing transition is guarded by
the condition [!hot()]. Because hot() returns a value of true, !hot() is
false, and the transition is not taken. This computation is taking place every
second.

Simulating with a Sensor Event, Junction, and Function

3-29

4 In the Simulink diagram, change the value of the Constant block attached
to the data temp input port to 110.

When the value of temp is
changed to 110, hot() returns a
value of false and !hot() is
true. This means that the
update event temp_event
causes the transition to Lo to be
taken.

The value for the data speed is
set to 1 (see Simulink Display
block) and the state Lo becomes
active. It stays active because
its only outgoing transition
requires an off_switch event.

3 Controlling with Junctions

3-30

5 In the Simulink model, double-click the Manual Switch to move it from the
1 pole to the -1 pole.

Because off_switch is a falling edge triggered event, the drop in signal from
1 to -1 sends an off_switch event to the Controller block. The Controller
diagram responds as follows:

The off_switch event causes the
Controller diagram to look for an
available transition. Because the
transition to the Off state
requires an off_switch event, it
is taken.

The value for the data speed is set
to 0, and the Off state is active,
and stays active, until an
on_switch event occurs. This puts
the model simulation back at the
beginning of its behavior cycle.

Simulating Junction Behavior

3-31

Simulating Junction Behavior
In this section, you change the model SFcontrol4 you build in “Simulating with
a Sensor Event, Junction, and Function” on page 3-25 to demonstrate
important junction behavior. Use the following steps to add and test a new
function warm and the transition condition that calls it:

1 Add the function warm and a condition that calls it to the SFcontrol4 model
as shown.

Notice that the functions warm and hot are not complementary. Both
functions are true if the temperature is greater than or equal to 120. To
determine the outgoing transition segment from the junction, Stateflow
applies the following rule:

If several outgoing transitions with conditions are equally valid, Stateflow
chooses the outgoing transition with the smallest clock position.

New function warmNew condition

3 Controlling with Junctions

3-32

2 Leave the value of the Constant block input to the input data temp at 130
and simulate the model with an on_switch event to observe the following
behavior:

You can change this behavior by making a small change in the location of
the outgoing transition in the following steps:

3 Stop simulation.

Because both hot and warm return
a value of true, Stateflow chooses
the 6 O’Clock transition segment
over the 12 O’Clock one.

The value for the data speed is set
to 1, and the Lo state is active,
and stays active, until an
off_switch event occurs.

Simulating Junction Behavior

3-33

4 Position the cursor over the source point of the outgoing transition on the
junction.

The cursor changes to a small circle as shown.

Cursor becomes a small circle

3 Controlling with Junctions

3-34

5 When the circle forms, click-drag the transition source over to the right and
release in a position similar to the following:

6 Start simulation again.

Transition source now at 1 O’Clock

Simulating Junction Behavior

3-35

7 Send an on_switch event by double-clicking the Manual Switch block to
move it from the -1 pole to the 1 pole.

Both hot and warm return a
value of true. This time
Stateflow chooses between the
two transition segments by
favoring the 1 O’Clock transition
segment over the 6 O’Clock one.

The Hi state becomes active, and
stays active until an off_switch
event occurs (try it).

3 Controlling with Junctions

3-36

Introducing Stateflow Semantics
The behavior applied to the outgoing transition from a junction in the example
in “Simulating Junction Behavior” on page 3-31 also applies to states. For
outgoing transitions of equal validity from a state or a junction, Stateflow
makes the decision based on clock position.

Stateflow follows a rule like this to make sure your Stateflow diagrams are
deterministic. If Stateflow does not have this kind of rule, it could get stuck
determining the right thing to do. Instead, Stateflow has a set of rules called
semantics that it uses to make sure your model always runs and never gets
stuck.

Here are some of the semantics that you have learned in this Getting Started
guide to this point:

• Stateflow updates only in response to a broadcast event.

• Transitions can be guarded to take place only in response to the specified
event under the specified condition.

• States can have entry actions: actions that are performed when the state is
entered.

• In testing for outgoing transitions or transition segments from a junction or
a state, Stateflow gives preference to transitions with conditions.

• If two or more outgoing transitions test equal in validity, Stateflow prefers
the transition with the smallest clock position.

Stateflow has other semantics to make your diagrams behave
deterministically. This subject is dealt with in much greater detail in the
“Stateflow Semantics” chapter of Stateflow documentation. This is a good place
to go to further your education on Stateflow after you have completed this
Getting Started guide.

Using Junctions in Flow Diagrams

3-37

Using Junctions in Flow Diagrams
In “Simulating Junction Behavior” on page 3-31, you see the convenience of a
junction in providing alternate paths to complete a transition between states.
But you can use junctions without states to provide flow diagrams. Flow
diagrams are “visible programming” that let you perform logical operations
without using a state. In this section, you see a few examples of flow diagrams
and how they can be useful to you.

The simplest flow diagram is a default transition into a junction. You have
already seen this flow diagram in “Adding a Graphical Function for
Convenience” on page 3-19. You use it to execute whatever actions you attach
to the default transition. The following is an example of the simplest flow
diagram:

When this diagram receives an update, the default transition is taken into the
junction. Because there is no other flow out of the junction, it is a terminating
junction. When Stateflow encounters a terminating junction, the chart is exited
altogether. When the next update occurs, execution starts over again with the
default transition. This is different from a state that stays active between
updates.

3 Controlling with Junctions

3-38

The benefit of flow diagrams is their ability to perform complex logic in a visible
environment. For example, the following flow diagram behaves like an if
statement:

This flow diagram would have the following code representation:

if (speed == 0){
speed++;

}

To test the behavior of this flow diagram, do the following:

1 Open the model SFcontrol2.mdl.

2 Open the Stateflow block and clear the diagram.

3 Enter the preceding flow diagram.

4 Save the model as SFcontrol_if.mdl.

Note that the data speed is already defined for SFcontrol2.mdl (and now
SFcontrol_if.mdl) and initialized to zero by default.

Using Junctions in Flow Diagrams

3-39

5 Choose Start from the Simulink window Simulation menu to start
simulation of SFcontrol_if.mdl.

6 In the Simulink model, double-click the Manual Switch to move it from the
-1 pole to the 1 pole to send an update event:

The default transition is taken
into the first junction.

The only outgoing transition
from the first junction has no
condition, so it is taken.

Remember that transitions with
conditions have preference over
unconditional transitions.
Because speed = 0, the condition
[speed==0] is true, and the
outgoing transition to the right
is taken.

3 Controlling with Junctions

3-40

The only outgoing transition has
no condition, so it is taken.
Taking it executes the condition
action {speed++}, which adds 1
to the value of speed, which is
now 1.

The only outgoing transition has
no condition, so it is taken.

The only outgoing transition has
no condition, so it is taken. Its
destination is a terminating
junction, a junction with no
outgoing transitions. This ends
execution of the diagram.

Using Junctions in Flow Diagrams

3-41

7 In the Simulink model, double-click the Manual Switch to move it from the
1 pole to the -1 pole to send another update event.

The Display block in Simulink reflects the resulting value for speed.

Because speed is no longer equal
to 0, when the chart is updated
again, the alternate path is
taken.

3 Controlling with Junctions

3-42

Besides the flow diagram for an if statement, there are a number of other flow
diagram types. For example, you can add an action to the alternate path of the
if diagram to create an if-else diagram.

Here are a few examples of other flow diagrams that you can try on your own.
Don’t forget to define the counter data i.

IF-ELSE

if (speed == 0){
speed++;

}
else{

speed--;
}

FOR loop

for (i=0;i<num_loops;i++){
speed++;

}

WHILE

while (i < 3){
speed++;
i++;

}

4
Controlling with
Superstates

This chapter introduces you to superstates. These objects extend the use of states and transitions by
defining states that contain other Stateflow objects. Superstates form the basis of Stateflow
containment hierarchy. They also help you to simplify your Stateflow diagrams. Use the following
sections to add superstates to the SFcontrol4 model you build in Chapter 3, “Controlling with
Junctions”:

Adding Superstates to Simplify Control
(p. 4-2)

Use a junction and an additional state to delay turning on
a control device for temperature changes.

Adding a History Junction to Save
State (p. 4-14)

Use a history junction to remember the active state of a
superstate when it becomes active again.

Creating Subcharts to Add More
Substates (p. 4-20)

Convert a superstate into a subchart to gain room for
more substates.

Controlling Objects with Parallel
Superstates (p. 4-31)

Use parallel states to control two independent devices
together.

4 Controlling with Superstates

4-2

Adding Superstates to Simplify Control
You create a junction in Chapter 3, “Controlling with Junctions” to choose
between destination states in the following Stateflow diagram:

While this does give you more destination control states, it also adds more
complexity to the Stateflow diagram. Instead of having one transition from the
On state to the Off state, now you need transitions from both the Hi and Lo
states to the Off state. In fact, for every control state that you add (for example,
Medium, Medium-High, and so on), you need a transition back to the Off state.

To solve this problem, you create a superstate for the Hi and Lo states.
Superstates can contain many states for a given state and give you the
simplicity of only one exit point. In the following procedure topics, you create
and test the On superstate that you add to contain the states Hi and Lo:

1 “Adding a Superstate” on page 4-3 — Add a superstate to contain the states
Hi and Lo, which then become substates.

2 “Simulating the Superstate” on page 4-9 — Simulate the superstate to
examine its behavior.

Adding Superstates to Simplify Control

4-3

Adding a Superstate
You add superstates to contain other objects to give them the simplicity of one
start point and one exit point. In this topic, you add a superstate to contain the
states Hi and Lo in the Stateflow diagram of the Simulink model SFcontrol4
that you created in, Chapter 3, “Controlling with Junctions.”

Use the following steps to add the superstate On:

1 If not already loaded, load the Simulink model SFcontrol4 you save in
“Adding a Graphical Function for Convenience” on page 3-19 and save it as
SFcontrol5.

2 Double-click on the Stateflow block Controller to open it, if not already open.

4 Controlling with Superstates

4-4

3 Delete all the transitions except the default transition into the Off state and
the transition from Hi to Lo.

The Stateflow diagram now has the following appearance:

Adding Superstates to Simplify Control

4-5

4 Place a new state below the Lo state as shown.

Notice that both the new state and the Lo state are highlighted. This kind of
highlighting occurs for conflicts between states. Two states cannot
permanently overlap each other like this. However, that is soon remedied in
the following steps.

New state

4 Controlling with Superstates

4-6

5 Place the cursor over the upper-right corner of the new state until it turns
into a set of diagonal arrows and click-drag the upper-right corner of the new
state above the state Hi as shown.

Adding Superstates to Simplify Control

4-7

6 Click-drag the upper-left corner of the new state to the left of Hi and release
the mouse as shown.

Notice that even though the new state is highlighted, the states Hi an Lo are
not. These states are no longer in conflict with the new state, which now
contains them.

4 Controlling with Superstates

4-8

Finish the diagram with the following steps:

7 Name the new state On.

8 Draw a default transition to the state Lo.

9 Click-drag a transition from Lo to Hi and label it with [hot()].

10 Click-drag a transition from On to Off and label it with off_switch.

11 Click-drag a transition from On to Off and label it with on_switch.

This is what the final Stateflow diagram should look like:

12 Save the model (SFcontrol5).

Adding Superstates to Simplify Control

4-9

Simulating the Superstate
In this section, you test the superstate that you add to the Controller diagram
of the model SFcontrol5 in “Adding Superstates to Simplify Control” on
page 4-2. Test the new superstate with the following steps:

1 In the Simulink diagram,

- Make sure that the Manual Switch points downward to the -1 pole.

- Set the Constant block feeding the port temp on the Stateflow Controller
block to a value of 110.

2 Choose Start from the Simulink window Simulation menu to start
simulation of the model and observe the following:

The Stateflow diagram
updates with the first temp
event and the default
transition to state Off is taken.

Off is entered and stays active.

4 Controlling with Superstates

4-10

3 In the Simulink model, with the Manual Switch block, send an on_switch
event to the Controller block.

The transition to the On state
is taken.

The On state is entered and
becomes active. The default
transition to substate Lo is
taken.

The Lo state is entered. Both
On and its substate Lo remain
active.

Adding Superstates to Simplify Control

4-11

4 In the Simulink diagram, change the value of the Constant block attached
to the data temp input port to 130.

5 Alternate the value for temp between 110 and 130 and observe the
transitions from the Hi to the Lo state and from the Lo to the Hi state.

The Stateflow diagram
updates with a temp event.
Both the On and Lo state test
for valid outgoing transitions.
Because the value of temp is
changed to 130, the function
Hot() returns a value of true
and the transition from Lo to
Hi is taken.

The transition from On to Off
responds only to the event
off_switch and is, therefore,
not taken.

The value for the data speed is
set to 2 and the state Hi
becomes active and stays
active, along with its parent
state, On.

4 Controlling with Superstates

4-12

6 In the Simulink diagram, use the Manual Switch block to send an
off_switch event trigger to the Stateflow block Controller.

With the broadcast of the
off_switch event, the
transition from On to Off is
taken.

Before On is exited, its active
substate, Hi, is exited and is
no longer active.

Adding Superstates to Simplify Control

4-13

On is exited and is no longer
active.

Finally, the data speed is set
to 0 and the state Off is
entered and becomes active.

4 Controlling with Superstates

4-14

Adding a History Junction to Save State
If a Stateflow diagram exits and reenters a superstate like the one in
“Simulating the Superstate” on page 4-9, the destination substate of the
default transition becomes the first active substate. While this behavior might
be acceptable for some superstates, for others, it might be preferable to reenter
the most recently active substate.

For example, suppose that a superstate represents the state of a clothes washer
and its substates represent its different cycles: soak, wash, rinse, and spin. If
you lift the lid of a washer while it is in the spin cycle, the washer stops in
response. If you drop the lid, the washer resumes its spin cycle. If, instead, the
soak cycle started again, it might take you a long time to get your clothes
washed!

History junctions extend the ability of charts and superstates by recording the
activity of their substates. You use a history junction in a chart or a superstate
to indicate that its last active substate becomes active when the chart or
superstate is reentered. Add and simulate the effects of a history junction in
the following procedure topics:

1 “Adding a History Junction to a Superstate” on page 4-14

2 “Simulating with a History Junction” on page 4-17

Adding a History Junction to a Superstate
History junctions store the most recently active substate of a superstate. When
the superstate is exited and reentered, this is the substate that becomes active.
In this topic, you add a history junction to a superstate in the following steps:

1 If not already loaded, load the Simulink model SFcontrol5, which you save
in “Adding Superstates to Simplify Control” on page 4-2.

2 Save the model as SFcontrol6.

Adding a History Junction to Save State

4-15

3 Open the Stateflow diagram for the Controller block as shown.

4 Controlling with Superstates

4-16

4 In the drawing toolbar, click the History Junction tool .

5 Move the cursor to the upper-right corner of the superstate On and click to
place a history junction as shown.

6 Save the model (SFcontrol6).

New history junction

Adding a History Junction to Save State

4-17

Simulating with a History Junction
Observe the behavior of the substates of the superstate On during simulation
of the Stateflow diagram in the SFcontrol6 model.

1 Start simulation.

When simulation starts, the
first temp_event event
updates the diagram and the
state Off is entered.

4 Controlling with Superstates

4-18

2 Use the Manual Switch to send an on_switch event to the Controller block.

The on_switch event triggers
the transition to On. Both On
and its default state, Lo,
become active.

The periodic event temp_event
updates the diagram every
second. Because the data temp
is set to 130, the function hot
returns a true and the
transition from Lo to Hi is
taken. State Hi becomes
active.

Adding a History Junction to Save State

4-19

3 Use the Manual Switch to send an off_switch event to the Controller block.

4 Use the Manual Switch to send an on_switch event to the Controller block.

The off_switch event triggers
a transition from On to Off.
Off becomes active.

The on_switch event triggers
a transition from Off to On.
This time, Hi is the active
substate, and not Lo, the
default substate.

4 Controlling with Superstates

4-20

Creating Subcharts to Add More Substates
Many superstates have more substates of control than just Hi and Lo. For
example, an On state for a washer must have states for soaking, washing,
rinsing, and spinning. The On state for the transmission of a car must have
substates park, reverse, drive, lo, and overdrive. In this section, you add more
substates to the superstate On in the model SFcontrol6 that you create in
“Adding Superstates to Simplify Control” on page 4-2. But adding substates
can make your diagrams crowded. To make your diagrams more readable,
Stateflow diagrams let you create subcharts.

Create more substates of the state On by making it a subchart in the following
procedure topics:

1 “Converting a State to a Subchart” on page 4-20

2 “Simulating a Subchart” on page 4-28

Converting a State to a Subchart
Let’s suppose that you want to add more substates to the superstate On that
you create in “Adding a Superstate” on page 4-3. You can always click-drag the
edges of the Stateflow diagram editor window to make it as big as possible.
However, if you add enough substates, you could easily run out of room and
start to impinge on other elements of the diagram. Instead, you can turn the
On state into its own chart, a subchart, with the following steps:

1 If not already loaded, load the Simulink model SFcontrol6 you save in
“Adding Superstates to Simplify Control” on page 4-2 and save it as
SFcontrol7.

Creating Subcharts to Add More Substates

4-21

2 Double-click on the Stateflow block Controller to open it.

3 Right-click on the state On.

4 Controlling with Superstates

4-22

4 In the resulting pop-up menu, select Make Contents followed by
Subcharted in the submenu that results.

The state On now becomes opaque as shown.

Creating Subcharts to Add More Substates

4-23

5 Double-click the On state.

The On state and its contents now appear in a chart of their own, a subchart.

4 Controlling with Superstates

4-24

6 Vertically enlarge the subchart window and the state On to have the
following appearance:

As a subchart, the state On can be any size.

Creating Subcharts to Add More Substates

4-25

7 At the bottom of state On, add a new state named No with the entry action
speed = 0;.

8 Delete the default transition to the state Lo and add a new default transition
to the state No.

Only one substate can be the default state for a superstate.

9 Draw a transition from No to Lo and label it [!cool()].

10 Draw a transition from Lo to No and label it [cool()].

This is what you should now see:

4 Controlling with Superstates

4-26

11 In the Stateflow diagram editor, click the Up to Controller tool .

Focus returns to the original Stateflow diagram.

12 Add the function cool() and group it, as shown.

Creating Subcharts to Add More Substates

4-27

13 You can now resize the state On and move other diagram objects to make the
diagram appear a little neater, as shown.

14 Save the model (SFcontrol7).

4 Controlling with Superstates

4-28

Simulating a Subchart
In “Converting a State to a Subchart” on page 4-20, you edit a Stateflow
diagram to turn the superstate On into a subchart and add substates to it.
Observe the behavior of the subchart On and its substates during simulation
of the Stateflow diagram in the SFcontrol7 model in the following steps:

1 Start the simulation and change the value of the input data temp to 90.

2 Send an on_switch event with the manual switch.

When simulation starts,
the first temp event
updates the diagram and
the state Off is entered.

Creating Subcharts to Add More Substates

4-29

3 Double-click the On state.

This opens the subchart On to expose the activity of its child states.

4 Change the input value for temp to take the transitions between the states
No, Lo, and Hi.

4 Controlling with Superstates

4-30

5 Send an off_switch event with the Manual Switch block.

6 Click the Up to Controller tool .

The active substate On
exits.

The transition from the On
state is taken to the Off
state, and the Off state
becomes active.

Controlling Objects with Parallel Superstates

4-31

Controlling Objects with Parallel Superstates
In this section, you control two control objects instead of one. For example,
instead of controlling a single fan with two speeds, you use two single-speed
fans, each with its own control. Because both fans have their own control and
must run concurrently, you use another form of hierarchy to control the fans in
Stateflow: parallel states.

You use parallel states in Stateflow to control concurrent processes.
Concurrent processes are control processes that take place simultaneously, but
independently. Because each fan is controlled separately, as if it were the only
fan running, you control them concurrently.

Use the following procedure topics to create a model with parallel states and
test them in simulation:

1 “Creating Parallel States” on page 4-32 — Create a model with two
Stateflow diagrams, each executing in its own parallel state.

2 “Simulating Parallel States” on page 4-37 — Test the parallel states you
create in simulation.

Creating Exclusive States
The states that you have seen so far in this Getting Started guide are exclusive
states. Exclusive states have solid borders and are sometimes referred to as OR
states. You create them by assigning the parent of the states exclusive
decomposition. Because this is the default setting for Stateflow charts, all the
states you have created so far have been exclusive.

The distinguishing feature about exclusive states is that only one state among
brother and sister states can become active at any one time. For example, if you
have a chart with the states On and Off, only one of these states can become
active when you update the chart. You specify that state with a default
transition.

4 Controlling with Superstates

4-32

Creating Parallel States
In “Creating Exclusive States” on page 4-31, you learn about exclusive states,
the default state of Stateflow, the type of state that you have been creating in
all the previous material of this Getting Started guide. In this topic, you learn
about parallel states, the only other type of state in Stateflow.

Parallel states have dashed borders and are sometimes referred to as AND
states. You create them by assigning the parent of the states parallel
decomposition. The distinguishing feature about parallel states is that all
brother and sister parallel states are active at the same time. You could say
that these states are actively concurrent with each other.

In this topic, you create parallel states to provide control over two individual
control objects in the following steps:

1 Load the Simulink model SFcontrol3 you save in “Adding a Sensor to the
Model” on page 3-2 and save it as SFcontrol8.

2 Change the Constant block value for the input data temp to 130.

Controlling Objects with Parallel Superstates

4-33

3 Open the Stateflow diagram for the Stateflow block Controller.

4 Use zoom to decrease the size of the diagram and draw a superstate around
the diagram, as shown.

4 Controlling with Superstates

4-34

5 Label the superstate FAN1 and double-click it to group it.

6 Increase the Stateflow diagram window to twice its horizontal size.

7 Place the cursor in state FAN1 and right-click and drag a copy of it to the
right as shown.

8 Rename the copied superstate on the right to FAN2.

Controlling Objects with Parallel Superstates

4-35

9 Right-click empty space in the diagram and, from the resulting context
menu, select Decomposition followed by Parallel(AND).

Notice that the states FAN1 and FAN2 now have dashed borders.

Notice that both states have numbers in their upper-right corner. These
numbers give the priority of one parallel state over another. Even though
parallel states have concurrent behavior, they are not completely
concurrent. They are executed according to their priority number.

Priority numbers are assigned to parallel states automatically by Stateflow
based on the position of the state. Parallel states that have a higher position
in the Stateflow diagram editor receive a higher priority. Parallel states on
the left have priority over states on the right with the same vertical position.

4 Controlling with Superstates

4-36

10 Move the FAN2 state up or down and notice the change in priority number
for both FAN1 and FAN2.

Notice that the Stateflow diagram has two states named On and two states
named Off. These states do not conflict because each set of On and Off states
is in its own namespace. States must be named uniquely, but only within
their namespace.

11 In the parallel state FAN2, label the transition from Off to On as follows:

[in(FAN1.On) & (temp>120)]

The expression in(FAN1.On) checks if the On state in FAN1 is active before
the transition is taken. This use of the built-in function in is referred to as
an implicit event. In this case, if the state Off in FAN2 is active and the state
On in FAN1 is active, in(FAN1.On) is true and the transition from Off to On
in FAN2 is taken.

Note You use namespace dot notation to refer to an object in another
namespace.

Controlling Objects with Parallel Superstates

4-37

12 Continue making the following changes to the diagram in parallel state
FAN2:

- Label the transition from On to Off as follows:
[in(FAN1.Off) | (temp<=120)]

- Change the entry action of state On to speed = 2;.

- Remove the entry action of state Off.

After these changes are made, this is what you should see.

13 Save the model (SFcontrol8).

Simulating Parallel States
In “Creating Parallel States” on page 4-32, you create parallel states, that each
have their own Stateflow diagram. Observe the behavior of each parallel state
during simulation of the Stateflow diagram in the model SFcontrol8 in the
following steps.

4 Controlling with Superstates

4-38

1 Start the simulation.

Parallel state FAN1 becomes active followed by its default substate Off.

Parallel state FAN2 becomes active followed by its default substate Off.

Controlling Objects with Parallel Superstates

4-39

2 Use the Manual Switch block to send an on_switch event.

FAN1 substate On becomes active.

FAN2 substate On becomes active because FAN1 substate On is active and
the temperature is greater than 120.

4 Controlling with Superstates

4-40

3 Use the Manual Switch block to send an off_switch event.

FAN1 substate Off becomes active.

FAN2 substate Off becomes active because FAN1 substate Off is active.

Controlling Objects with Parallel Superstates

4-41

4 Change the input value for temp to 110 and repeat steps 2 and 3.

This time notice that the Off state of FAN2 stays active.

4 Controlling with Superstates

4-42

5

Stateflow in Simulink

Stateflow is the preferred way to create modeling logic in Simulink. This type of logic lends itself
easily to use as a control mechanism for a physical plant in Simulink that models a physical process.
This chapter shows you how you can use Stateflow to control a physical plant in Simulink.

Controlling a Physical Plant (p. 5-2) Learn how you can use a Stateflow block to control the
simulation of a physical plant.

The Bang-Bang Boiler Demo (p. 5-8) Use a Stateflow demo model of a Stateflow block
controlling a physical plant to further your knowledge of
Stateflow.

Where to Go from Here (p. 5-13) Continue your study of Stateflow through other resources
at The MathWorks.

5 Stateflow in Simulink

5-2

Controlling a Physical Plant
The primary use of Stateflow is to simulate the control of control objects in a
physical plant. For example, you can use the Stateflow diagram you developed
in “Controlling Objects with Parallel Superstates” on page 4-31, SFcontrol8, to
control two fans in an attic space.

1 Load the Simulink model SFcontrol8 you save in “Controlling Objects with
Parallel Superstates” on page 4-31 and save it as SFcontrol9.

Controlling a Physical Plant

5-3

2 Delete the Constant and Display blocks and their connections to the
Controller Stateflow block.

3 Add a subsystem to the right of the Controller block and name it Physical
Plant.

5 Stateflow in Simulink

5-4

4 Double-click the subsystem to open it and program it as follows:

The part of the model that simulates the attic air space is packaged in a
single subsystem. Because it is only an example, the model uses a
nonanalytical means for computing the air temperature in an attic space.
The cooling value is chosen by a multiport switch that takes the value of the
data speed output from the Stateflow block as an index. If speed = 2, both
fans are running, and the chosen cooling rate is -.015 degrees per sample. If
speed = 1, only one fan is running, and the cooling rate is -.01 degrees per
sample. If speed = 0, no fans are running, and a cooling rate is .01 degrees
per sample (that is, heating) is chosen.

The cooling value is further modified by a factor that depends on how close
attic air temperature is to ambient air temperature. Obviously, the closer
that ambient air temperature is to the attic temperature, the less cooling
takes place. The amount of cooling that is finally calculated is added to a
running integral sum that is the attic temperature. This temperature is fed
to the output of the physical plant subsystem.

Controlling a Physical Plant

5-5

5 In the top level Simulink diagram, connect the speed output port of the
Controller block to the speed input port of the subsystem.

6 Use a Constant block set at a value of 90 to provide input to the ambient
input port of the subsystem.

5 Stateflow in Simulink

5-6

7 Connect the temp output port of the subsystem to the temp input port of the
Controller Stateflow block.

This sends the temperature computed by the physical plant back to the
Stateflow block to make a decision on whether the second fan should be
running or not.

8 Connect the temp output port of the subsystem to a Scope block.

Controlling a Physical Plant

5-7

The physical plant model is now complete. Continue by simulating it and
observing the temperature in the Scope block display as follows:

Fan off; attic heats to 160

2nd fan off at 120 degrees;

Fan turned on; both fans on

attic cools to 90 with one fan

Fan turned off;
attic heats to 160

5 Stateflow in Simulink

5-8

The Bang-Bang Boiler Demo
A good model to use in furthering your study of Stateflow is the Bang-Bang
Boiler demo model. This model retains the basic structure of the Stateflow
diagrams used in the Getting Started guide, but adds more levels of control
with other Stateflow features.

Access the Stateflow demo model Bang-Bang Boiler as follows:

1 In the MATLAB window, from the Help menu, select Demos.

The Help window appears with the Demos topic list displayed in the left
pane.

2 Expand the Simulink node.

3 Expand the Stateflow node.

4 Expand the Examples node.

The Bang-Bang Boiler Demo

5-9

5 Double-click the Bang-Bang Control Using Temporal Logic node to open
the sf_boiler model.

A Simulink model window opens along with a Stateflow diagram and a
Scope window. The model has the following appearance:

The structure of this model is similar to the model you constructed in
“Controlling a Physical Plant” on page 5-2. Note the following about this
model:

- The Stateflow block Bang-Bang Controller receives updates from a Pulse
Generator block set to deliver a pulse every second. The Pulse Generator
block feeds the rising-edge trigger event sec defined for the Stateflow
diagram.

- The only other input is from a Constant block, which feeds a value for the
setpoint temperature of a boiler to the input data reference defined for
the Stateflow diagram.

- The Bang-Bang Controller block controls a boiler simulated by the
subsystem Boiler Plant Model through a single output data value, boiler.
For each time sample, the Boiler Plant Model calculates the value of the
Simulink signal digital temp, which is input to the data temp for the
Bang-Bang Controller block.

5 Stateflow in Simulink

5-10

6 Double-click to the Bang-Bang Controller block to bring focus to its
Stateflow diagram, as shown.

The Stateflow diagram for the Bang-Bang Controller block is very similar to
the diagram you build in “Creating Subcharts to Add More Substates” on
page 4-20. The diagram has two states at the top level, On and Off. In addition,
the state On is a subchart containing other states. Also, the diagram includes
the definition of three graphical functions that are called in the Stateflow
diagram.

The Bang-Bang Boiler Demo

5-11

The Bang-Bang Controller Stateflow diagram also introduces you to the
following new features:

• The Stateflow diagram is contained by a box named Heater.

Boxes are used to group parts of the model for the sake of design modularity.
Boxes add no Stateflow behavior of their own; they just group things. This
means that the states On, Off, and any substates of On are designated as
part of a heater. Boxes can be grouped (as Heater is) or subcharted as well.
They are also part of the containment hierarchy of a diagram, as you will see.

• The transitions between states On and Off contain special event triggers
called temporal events.

Temporal events count events and become true only when the count reaches
the specified level. For example, the temporal event trigger after(20,sec)
on the transition from On to Off means that if the state On is active,
Stateflow waits for 20 sec events before the transition from On to Off is
taken.

• The state Off contains a special kind of action called an on <event> action.

An on <event> action executes only if its state is active when it receives the
event <event>. In this case, if Off becomes active, and stays active for five
updates from the trigger event sec, the function flash_LED is called.

• The transition from the right side of On to Off is a special transition called a
supertransition.

Supertransitions connect a substate with a peer or superstate of the parent
state. This supertransition originates with a substate of On and ends with
the state Off.

5 Stateflow in Simulink

5-12

7 Double-click the box Heater to ungroup it and double-click the subchart On
to open it, as shown.

• The supertransition to Off originates with the state NORM, a substate of the
superstate On. The supertransition also includes a condition on the return
value from a call to the function warm, which is defined inside of On. Because
a transition is owned by the highest member of the hierarchy that it touches,
the supertransition is owned by the chart. That is why the condition is called
with [Heater.On.warm()] and not just [warm()].

A supertransition from a substate to a point outside of the parent superstate
executes only when the substate and the superstate are active. This means
that the supertransition from NORM to Off can execute only when NORM
and On are both active.

• The state On has a during action. During actions for a state are executed
when the state is active and receives an event such as the trigger event sec.
If the event does not cause an outgoing transition from the state to be taken,
the during action is executed.

8 Be sure to simulate the Bang-Bang Temperature Control Model to watch the
preceding features execute.

Where to Go from Here

5-13

Where to Go from Here
In this Getting Started guide, you have learned a great many of the features of
Stateflow diagrams, but there is still a lot more to learn. To advance your
learning of Stateflow, here are a few places to go:

• Stateflow Semantics — This lengthy chapter in your Stateflow
documentation is filled with example Stateflow diagrams and detailed
point-by-point descriptions of their behavior during execution.

• Stateflow Demos — Stateflow has a substantial collection of
demonstration models, which you can access as follows:

- In the MATLAB window, from the Help menu, select Demos.

- Expand the Simulink node to display a Stateflow node, among others.

- Expand the Stateflow node to reveal directories of demo models. Most of
these directories are oriented to studying specific Stateflow features. The
Examples directories contains some more sophisticated real-life example
models.

• Stateflow Training — The MathWorks offers regular courses in Stateflow
along with other courses in MATLAB and Simulink. To see a list of available
Stateflow training courses, visit the MathWorks web site
www.mathworks.com/services/training.

5 Stateflow in Simulink

5-14

Index-1

Index

A
actions

entry for state 2-50
modifying output data 2-50

adding connective junctions 3-13
adding superstates 4-3
animation of Stateflow diagrams during

simulation 1-12

C
C code

generating from Stateflow 1-14
calling a graphical function example 3-24
compiler

for target 1-21
conditions

adding to transitions 3-16
connective junctions

adding 3-13
converting a state to a subchart 4-20
copying Stateflow objects 3-8

D
data

adding output data to Stateflow block 2-52
adding sensor data 3-6
output data 2-50
sending output data to Simulink 2-54
using in Stateflow 1-10

Debugger messages 2-32
debugging window during simulation 2-31
decomposition

parallel 4-32
deleting events in Model Explorer 2-43
deleting Stateflow objects 3-8

deterministic
definition 3-36

diagram
opening Stateflow diagram 2-6

drawing
states 2-7
transitions 2-10

E
entry actions for state 2-50
errors

reporting Stateflow diagram errors 2-26
events

adding sensor event 3-2
adding trigger event to diagram 2-14
guarding transitions 2-36
implicit event example 4-36
multiple trigger events for chart 2-42
rising edge trigger event example 3-5
sending multiple trigger events 2-46
sending trigger event to Stateflow block 2-16
Stateflow reaction to 1-8
trigger events during simulation 2-55

examples of Stateflow applications 1-18
exclusive states 4-31

F
flow diagrams 3-37

if example 3-38
if-else example 3-42
in graphical functions 3-23
while example 3-42

functions
adding graphical function example 3-19

Index

Index-2

calling a graphical function example 3-24

G
generated C code 1-14
generating code

for custom targets 1-15
for Real-Time Workshop targets 1-14
for simulation targets 1-14
Stateflow Coder 1-20

graphical functions
adding 3-19
calling example 3-24

H
history junctions

simulation example 4-17

I
iced model during simulation 2-26
if flow diagram example 3-38
if-else flow diagram example 3-42
implicit event example 4-36
installation

optional software 1-20
prerequisite software 1-20
required software 1-19

introduction to Stateflow 1-1

J
junction behavior example 3-31
junctions

choosing destinations 1-9
in flow diagrams 3-37

K
knowledge level required for readers 1-19

L
labeling transitions 2-37

moving labels 2-40
laptop computer with Stateflow 1-22

M
messages in Debugger 2-32
model

creating in Simulink 2-3
iced during simulation 2-26
saving 2-5

Model Explorer
deleting events 2-43

modes of control 1-6
moving transition source point example 3-33

N
namespaces in parallel states 4-36

O
optional software

Real-Time Workshop 1-20
Simulink Report Generator 1-20
Stateflow Coder 1-20

ordering transitions example 3-31
output data

adding to Stateflow block 2-52
modifying with actions 2-50
sending to Simulink 2-54

Index

Index-3

P
parallel decomposition 4-32
parallel states

priority numbers 4-35
simulation example 4-37

parallel states example 4-31
parsing Stateflow diagram for errors 2-26
physical plant control example 5-2
priority numbers in parallel states 4-35

R
Real-Time Workshop 1-20
Real-Time Workshop targets 1-15
renaming Stateflow objects 3-8
rising edge trigger example 3-5

S
saving Simulink model 2-5
semantics

definition 3-36
simulation

debugging window 2-31
event triggers 2-55
setting up for Stateflow diagrams 2-22
starting simulation of a Stateflow diagram

2-25
Stateflow animation 1-12
superstate example 4-9

simulation of a subchart example 4-28
simulation of parallel states example 4-37
Simulink

and Stateflow 1-3
creating a model 2-3
sending output data to 2-54

Simulink Report Generator 1-20

starting simulation of a Stateflow diagram 2-25
state entry actions 2-50
Stateflow

about 1-1
and Simulink 1-3
block in model 2-3
choosing destinations with junctions 1-9
controlling a physical plant example 5-2
defined 1-2
examples of applications 1-18
generated C code 1-14
installation prerequisites 1-20
on laptop computer 1-22
opening diagram 2-6
optional software 1-19, 1-20
parsing diagram for errors 2-26
reacting to events 1-8
using data 1-10
ways to use it 1-17
Web site 1-20

Stateflow Coder for generating code 1-20
states

as control modes 1-6
drawing 2-7
exclusive decomposition 4-31
parallel decomposition 4-32

subcharts
converting state to 4-20
example 4-20
simulation example 4-28

superstate simulation example 4-9
superstates

adding 4-3
parallel states example 4-31

Index

Index-4

T
target compiler

setting up 1-21
targets

generating code for custom target 1-15
generating code for Real-Time Workshop

targets 1-14
generating code for simulation target 1-14
Real-Time Workshop 1-15

transitions
adding conditions 3-16
adding trigger events 2-36
changing active states 1-7
drawing 2-10
guarding with events 2-36
labeling 2-37
moving source point example 3-33
ordering example 3-31

trigger events
adding to Stateflow block 2-14
during simulation 2-55
for transitions 2-36
multiple for chart 2-42
rising edge example 3-5
sending multiple trigger 2-46
sending to Stateflow block 2-16

W
ways to use Stateflow 1-17
Web site for Stateflow 1-20
while flow diagram example 3-42

	Introduction to Stateflow
	What Is Stateflow?
	How Stateflow Works
	Stateflow Works with Simulink
	Stateflow Represents Control Modes with States
	Stateflow Changes Active States with Transitions
	Stateflow Reacts to Events
	Stateflow Chooses Destinations with Junctions
	Stateflow Uses Data Variables

	Watching Stateflow Execute During Simulation
	Generating C Code for Targets
	Simulation Targets
	Real-Time Workshop Targets
	Custom Targets

	Ways That You Can Use Stateflow
	Before You Get Started
	Required User Knowledge Level
	Required and Optional Software
	Stateflow Installation
	Setting Up Your Own Target Compiler
	Using Stateflow on a Laptop Computer

	Controlling with States and Transitions
	Building an On-Off Control Model
	Creating a Simulink Model with a Stateflow Block
	Saving a Simulink Model
	Opening the Diagram for a Stateflow Block
	Drawing States in Stateflow Diagrams
	Drawing Transitions in a Stateflow Diagram
	Adding a Trigger Event to the Stateflow Diagram
	Sending a Trigger Event to the Stateflow Chart

	Simulating a Stateflow Diagram
	Setting Up Diagram Simulation
	Simulating a Stateflow Diagram
	Using the Debug Tool During Simulation

	Guarding Transitions with Event Triggers
	Adding Event Triggers to Transitions
	Adding Multiple Trigger Events to a Stateflow Chart
	Sending Multiple Trigger Events to a Stateflow Chart

	Modifying Output Data with Actions
	Adding State Entry Actions
	Adding Output Data to the Stateflow Chart
	Sending Stateflow Output Data to Simulink

	Simulating Event Triggers and Modified Output Data

	Controlling with Junctions
	Adding a Sensor to the Model
	Adding a Sensor Event
	Adding Sensor Data

	Adding a Junction for Flow Control
	Deleting, Copying, and Renaming Stateflow Objects
	Adding and Connecting Junctions
	Entering Transition Conditions

	Adding a Graphical Function for Convenience
	Adding a Graphical Function
	Calling a Graphical Function

	Simulating with a Sensor Event, Junction, and Function
	Simulating Junction Behavior
	Introducing Stateflow Semantics
	Using Junctions in Flow Diagrams

	Controlling with Superstates
	Adding Superstates to Simplify Control
	Adding a Superstate
	Simulating the Superstate

	Adding a History Junction to Save State
	Adding a History Junction to a Superstate
	Simulating with a History Junction

	Creating Subcharts to Add More Substates
	Converting a State to a Subchart
	Simulating a Subchart

	Controlling Objects with Parallel Superstates
	Creating Exclusive States
	Creating Parallel States
	Simulating Parallel States

	Stateflow in Simulink
	Controlling a Physical Plant
	The Bang-Bang Boiler Demo
	Where to Go from Here

	Index

